首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   17篇
  国内免费   6篇
测绘学   4篇
大气科学   22篇
地球物理   64篇
地质学   61篇
海洋学   57篇
天文学   35篇
自然地理   2篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2020年   8篇
  2019年   9篇
  2018年   11篇
  2017年   11篇
  2016年   4篇
  2015年   6篇
  2014年   14篇
  2013年   15篇
  2012年   8篇
  2011年   5篇
  2010年   11篇
  2009年   8篇
  2008年   11篇
  2007年   6篇
  2006年   9篇
  2005年   9篇
  2004年   13篇
  2003年   11篇
  2002年   5篇
  2001年   4篇
  2000年   6篇
  1999年   7篇
  1998年   5篇
  1997年   1篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1988年   3篇
  1986年   3篇
  1985年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   7篇
  1972年   1篇
  1971年   2篇
排序方式: 共有245条查询结果,搜索用时 15 毫秒
61.
Lithospheric evolution of the Antarctic shield is one of the keystones for understanding continental growth during the Earth's evolution. Architecture of the East Antarctic craton is characterized by comparison with deep structures of the other Precambrian terrains. In this paper, we review the subsurface structure of the Lower Paleozoic metamorphic complex around the Lützow-Holm area (LHC), East Antarctica, where high-grade metamorphism occurred during the Pan-African orogenic event. LHC is considered to be one of the collision zones in the last stage of the formation of Gondwana. A geoscience program named ‘Structure and Evolution of the East Antarctic Lithosphere (SEAL)’ was carried out since 1996-1997 austral summer season as part of the Japanese Antarctic Research Expedition (JARE). Several geological and geophysical surveys were conducted including a deep seismic refraction/wide-angle reflection survey in the LHC. The main target of the SEAL seismic transect was to obtain lithospheric structure over several geological terrains from the western adjacent Achaean Napier Complex to the eastern Lower Paleozoic Yamato-Belgica Complex. The SEAL program is part of a larger deep seismic profile, LEGENDS (Lithospheric Evolution of Gondwana East iNterdisciplinary Deep Surveys) that will extend across the Pan-African belt in neighboring fragments of Gondwana.  相似文献   
62.
Recent crustal movements in eastern Taiwan were investigated based on geodetic and seismological data as a case study of the tectonics along a colliding plate boundary. Secular horizontal strain along the Longitudinal Valley, a probable arc-continent collision boundary between the Philippine Sea and Eurasion plates, is compressive with a large rate of 2 microstrains/year, and the maximum compression axis trends in NW-SE direction. This means that nearly two-thirds of the convergence rate between the two plates is consumed in the narrow zone along the valley and confirms the view that the valley is the plate boundary between the two. The amount of uplift in the Central Range, deduced from trigonometric leveling, reaches more than one meter during the past 60 years. Such active orogeny is caused by the high strain rate in this area. Horizontal displacement of the Coastal Range, a leading edge of the Philippine Sea plate, has a left-lateral component, suggesting that the boundary is a region of oblique collision and the range moves toward the north, producing subduction of the Philippine Sea plate off the Coast of northeastern Taiwan.An extensional strain pattern is found northeastern Taiwan near Hualien, in northern Taiwan near Ilan, and in southeastern Taiwan south Taitung. In northeastern Taiwan, the direction of the maximum extension axis is nearly parallel to the isodipth contours of deep-focus earthquakes that occurred under the southern part of the Ryukyu Trench. From a model calculation using a finite-element method, this pattern of strain is interpreted as an edge effect of the collision-subduction junction in northeastern Taiwan. The direction of the maximum extension in northern Taiwan forms high angles with the direction of the tectonic line near Ilan stretching from the Okinawa Trough. This fact is harmonious with the view that the Okinawa Trough is spreading. Extensional strain observed in southeastern Taiwan may be related to the eastward subduction since the area is situated on a transition zone, from collision to subduction.  相似文献   
63.
Microfracturing of rock is a complicated damage evolution process. Inaccurate prediction of micro-fracturing behaviours suggests a need for the development of a better modelling method. Analysis of acoustic emission (AE) measurements in double-torsion tests indicates that micro-fracturing behaviours during the loading stage have fractal time structures. This fractal behaviour can be described by C(t) ∝ tD, where D is the correlation exponent, t is the time and C(t) is the correlation integral. Furthermore, by utilizing measured AE data, a new method has been developed to model the AE behaviours of micro-fracturing in rock, in air, and following soaking in water and in a chemical solution of DTAB. The neutral models NN (10,21,2) and NN (10,20,2) were found to describe reasonably well the AE behaviours of micro-fracturing in rock under air and DTAB conditions, and water conditions, respectively. The cumulative AE events and the cumulative AE counts predicted by the neural models agreed well with those measured in experiments. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
64.
Norikura Volcano has not been active during the last 10,000 years in spite of the activity of the surrounding volcanic mountains. To study past volcanic activities, geological studies were carried out extensively. However, quite a few geophysical investigations were conducted to contribute to volcanology. Our objective is to detect the present subsurface structure of Norikura Volcano and to define volcanic stratifications. In the vicinity of Norikura Volcano, geothermal fields are still active. Subsurface volcanic rocks in this area have been exposed to geothermal activity and altered. To comprehend volcanic stratifications of Norikura and geothermal activity, we conducted audio frequency magneto-telluric (AMT) surveys around Norikura Volcano. AMT survey is useful in clearly defining the resistivity structure related to volcanic regions. The AMT data were acquired over a frequency range 10 Hz–10 kHz. Decomposition analysis was applied to the tensor impedance data. Subsequently, apparent resistivity and phase data were inverted using a two-dimensional magneto-telluric (MT) inversion and a model of Norikura was derived. The final model manifests that the surface resistors are in agreement with andesite lava or dacite lava. As for the deeper structure, a horizontal conductor is situated above resistive basements. The alteration of the conductor was weak, while basement rocks were strongly altered and/or heated through the thermal activity. The existence of these layers seems to indicate the degree of thermal activity of Norikura Volcano.  相似文献   
65.
To clarify the geological causes of rockslides induced by rainstorms in accretionary complexes, the geology and geomorphology of two large rockslides (volumes > 106 m3) induced by the heavy rainfall of Typhoon Talas in the Shimanto Belt, Kii Mountains, Japan in 2011 are investigated. Our analysis reveals that thrusts with brittle crush zones controlled the occurrence of the rockslides. The properties and distribution of thrusts were poorly constrained before this study. Flooding during the rainstorm removed surface materials along rivers, allowing thorough geological mapping to be performed. Gravitationally deformed slopes were studied using GIS analysis of 1 m digital elevation models (DEMs) and fieldwork, and X‐ray diffraction (XRD) analysis, permeability, and direct shear tests were used to characterize the mineralogy and geotechnical properties of fault gouge. The Kawarabi thrust has a brittle crush zone up to 6 m thick and acts as the sliding surface for both landslides. The thrust dips 34° downslope and is cut by high‐angle faults and joints along one or both sides of each landslide body. Prior to failure, the upper part of the slope contained small scarps, suggesting that the slopes were already gravitationally deformed. The slope instability can be attributed to long‐term river erosion, which has undercut the slope and exposed the thrust at the base of the slope. The groundwater level, monitored in boreholes, suggests that the Kawarabi thrust is a barrier to groundwater flow. The weak and impermeable nature of the thrust played an essential role in the generation of gravitational slope deformation and catastrophic failure during periods of increased rainfall. Thrusts are a common feature of accretionary complexes, including in the Shimanto Belt, and the mechanism of slope failure stated above can be typical of rockslides in accretionary complexes and provide new insights into landslide disaster mitigation.  相似文献   
66.
Supracrustal rocks around the North Pole Dome area, Western Australia, provide valuable information regarding early records of the evolution of crustal processes, surface environments, and biosphere. Owing to the occurrence of the oldest known microfossils, the successions at the North Pole Dome area have attracted interest from many researchers. The Paleoarchean successions (Warrawoona Group) mainly comprise mafic‐ultramafic greenstones with intercalated cherts and felsic lavas. Age constraints on the sediments have been mainly based on zircon U–Pb geochronology. However, many zircon grains have suffered from metamictization and contain anomalously high contents of common Pb, which makes interpretation of the U–Pb data complicated. In order to provide more convincing chronological constraints, an U–Pb Concordia age is widely accepted as the best estimate. Most zircons separated from two adamellites also suffered from severe metamictization. In our analyses, less metamictized domains were selected using a pre‐ablation technique in conjunction with elemental mapping, and then their U–Pb isotopic compositions were determined with a laser ablation inductively coupled plasma mass spectrometry. Most analyzed domains contained certain amounts of common Pb (204Pb/206Pb > 0.000 1), whereas three and five U–Pb data points with less common Pb (204Pb/206Pb < 0.000 1) were obtained. These U–Pb datasets yielded U–Pb Concordia ages of ca 3 445 Ma and 3 454 Ma, respectively. These ages represent the timing of the adamellite intrusion, and constrain the minimum depositional age of the Warrawoona Group. In addition, a single xenocrystic zircon grain showed a 207Pb/206Pb age of ca 3 545 Ma, supporting the idea that the sialic basement of the Pilbara Craton existed prior to 3 500 Ma. The in situ U–Pb zircon dating combined with the pre‐ablation technique has the potentials to identify non‐metamictized parts and to yield precise and accurate geochronological data even from partially metamictized zircons.  相似文献   
67.
The Hangenberg Crisis at the Devonian–Carboniferous boundary is known as a polyphase extinction event that affected more than 45 % of marine and terrestrial genera. As the cause of this event is still debated, analyses were carried out on sedimentary samples from the Devonian–Carboniferous Pho Han Formation in northeastern Vietnam to reconstruct the paleoenvironment around the time of this event using stable carbon isotopes; total sulfur; manganese; vanadium; molybdenum; and sedimentary organic matter, such as dibenzothiophenes, cadalene, and regular steranes. These geochemical signatures provide a high‐resolution redox history for this section and show that transgression‐driven high primary productivity, possibly enhanced by terrestrial input, caused severe oxygen depletion along the continental margin of the South China block during the Hangenberg Crisis.  相似文献   
68.
The Neogene marine sedimentary rock area in the eastern marginal region of the Japan Sea is an area with some of the highest landslide densities in Japan. Some of the landslides in this area have been known to involve saline groundwater, which can be the cause of these landslides. In order to demonstrate the relationships between landslides and saline water, topographic, geological, groundwater, and electromagnetic surveys were performed in the eastern marginal region of the Japan Sea. Many landslides and gravitational slope deformations with linear depressions and small scarps were recognized in the study area. The resistivity profile obtained by an electromagnetic survey suggests that there is a wide zonal distribution of saline water with salt concentrations equivalent to seawater at depths of 50–100 m or more and that the groundwater shallower than 50 m has an electrical conductivity of less than 100 mS/m. The shallow resistive groundwater is inferred to be meteoric water that replaced the saline groundwater, which likely weakened the bedrock, resulting in landslides. A ridge of competent tuff overlying mudstone has many linear depressions from gravitational slope deformation and low‐resistivity water to a depth of 600 m, which suggests that the mudstone was weakened by water replacement and deformed under the tuff caprock. The saline groundwater is inferred to be fossil seawater trapped in pores during sediment deposition, which is brought near the ground surface along with rocks by tectonic movement in the hills. Thus, the saline water and its fresh water replacement are among the important basic causes of the landslides. The oil well data obtained in the eastern marginal region of the Japan Sea suggest that such saline water replacement has occurred widely and that replacement is likely one of the predispositions for the frequent landslides there.  相似文献   
69.
The performance of nonstructural components has attracted attention, and previous large earthquakes have resulted in widespread damage to expansion joints. In contrast to the main structural components, for which ductility beyond the design tolerance is ensured, the safety margin of nonstructural components classified as the product of mechanical engineering, such as expansion joints, is uncertain. This paper investigates the damage sequence and safety margin of expansion joints through shake table testing. The expansion joints were installed to connect 2 rigid steel frames with short and long natural periods. Four commonly used types, high-performance and standard-performance floor and wall expansion joints, were tested. Seven damage patterns of the 4 expansion joints were observed, and most of the damage patterns were considered displacement dependent. The damage mechanisms and relative displacements at the moment of damage were identified by using strain gauges attached near collision and damage locations. The high-performance expansion joints showed only minor damage beyond the design motion range, whereas the standard-performance expansion joints exhibited minor damage below the design motion range and failure at the design motion range or slightly beyond. For each damage state, repair information was obtained through a questionnaire to an expansion joint manufacturer, and the sum of the initial cost and repair cost for high-performance and standard-performance expansion joints was compared. The results will be useful for the selection of expansion joints in the design process.  相似文献   
70.
Detrital zircon multi‐chronology combined with provenance and low‐grade metamorphism analyses enables the reinterpretation of the tectonic evolution of the Cretaceous Shimanto accretionary complex in Southwest Japan. Detrital zircon U–Pb ages and provenance analysis defines the depositional age of trench‐fill turbidites associated with igneous activity in provenance. Periods of low igneous activity are recorded by youngest single grain zircon U–Pb ages (YSG) that approximate or are older than the depositional ages obtained from radiolarian fossil‐bearing mudstone. Periods of intensive igneous activity recorded by youngest cluster U–Pb ages (YC1σ) that correspond to the younger limits of radiolarian ages. The YC1σ U–Pb ages obtained from sandstones within mélange units provide more accurate younger depositional ages than radiolarian ages derived from mudstone. Determining true depositional ages requires a combination of fossil data, detrital zircon ages, and provenance information. Fission‐track ages using zircons estimated YC1σ U–Pb ages are useful for assessing depositional and annealing ages for the low‐grade metamorphosed accretionary complex. These new dating presented here indicates the following tectonic history of the accretionary wedge. Evolution of the Shimanto accretionary complex from the Albian to the Turonian was caused by the subduction of the Izanagi plate, a process that supplied sediments via the erosion of Permian and Triassic to Early Jurassic granitic rocks and the eruption of minor amounts of Early Cretaceous intermediate volcanic rocks. The complex subsequently underwent intensive igneous activity from the Coniacian to the early Paleocene as a result of the subduction of a hot and young oceanic slab, such as the Kula–Pacific plate. Finally, the major out‐of‐sequence thrusts of the Fukase Fault and the Aki Tectonic Line formed after the middle Eocene, and this reactivation of the Shimanto accretionary complex as a result of the subduction of the Pacific plate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号