首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   7篇
测绘学   2篇
大气科学   4篇
地球物理   24篇
地质学   20篇
海洋学   25篇
天文学   31篇
综合类   1篇
自然地理   10篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   1篇
  2014年   4篇
  2013年   5篇
  2012年   10篇
  2011年   7篇
  2010年   2篇
  2009年   4篇
  2008年   9篇
  2007年   4篇
  2006年   2篇
  2005年   6篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   6篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有117条查询结果,搜索用时 281 毫秒
91.
Tropical cyclones expose river basins to heavy rainfall and flooding, and cause substantial soil erosion and sediment transport. There is heightened interest in the effects of typhoon floods on river basins in northeast Japan, as the migration of radiocaesium‐bearing soils contaminated by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident will affect future radiation levels. The five main catchments surrounding FDNPP are the Odaka, Ukedo, Maeda, Kuma and Tomioka basins, but little quantitative modelling has been undertaken to identify the sediment redistribution patterns and controlling processes across these basins. Here we address this issue and report catchment‐scale modelling of the five basins using the GETFLOWS simulation code. The three‐dimensional (3D) models of the basins incorporated details of the geology, soil type, land cover, and used data from meteorological records as inputs. The simulation results were checked against field monitoring data for water flow rates, suspended sediment concentrations and accumulated sediment erosion and deposition. The results show that the majority of annual sediment migration in the basins occurs over storm periods, thus making typhoons the main vectors for redistribution. The Ukedo and Tomioka basins are the most important basins in the region in terms of overall sediment transport, followed by the other three basins each with similar discharge amounts. Erosion is strongly correlated with the underlying geology and the surface topography in the study area. A low permeability Pliocene Dainenji formation in the coastal area causes high surface water flow rates and soil erosion. Conversely, erosion is lower in an area with high permeability granite basement rocks between the Hatagawa and Futaba faults in the centre of the study area. Land cover is also a factor controlling differences in erosion and transport rates between forested areas in the west of the study area and predominantly agricultural areas towards the east. The largest sediment depositions occur in the Ogaki and Takigawa Dams, at the confluence of the Takase and Ukedo Rivers, and at the Ukedo River mouth. Having clarified the sediment redistribution patterns and controlling processes, these results can assist the ongoing task of monitoring radioactive caesium redistribution within Fukushima Prefecture, and contribute to the design and implementation of measures to protect health and the environment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
92.
Ambient concentrations of polycyclic aromatic hydrocarbons (PAHs) were measured in Helsinki (Finland). Particle mass size distributions were obtained with a cascade impactor (12 stages) with glass fibre filters as substrates. Simultaneously with the impactor measurements, particulate and gaseous PAHs were collected on a quartz filter and XAD-2 adsorbent, respectively, for evaluation of gas-partition coefficients. Samples were analysed for PAHs by on-line coupled supercritical fluid extraction — liquid chromatography — gas chromatography — mass spectrometry. The impactor results showed that most of the PAHs in Helsinki urban area were concentrated in fine particles (<2.5 μm diameter) with unimode peak at about 1 μm. The results were comparable with the number distribution measured with a differential mobility particle sizer. Total amounts of PAHs (gas + particle) varied from 15 (acenaphthylene) to 1990 (fluorene) pg/m3. The PAHs lighter than 202 amu (pyrene and fluoranthene) were exclusively in gas phase, whereas those heavier than 202 amu were mostly associated with particles. A plot of the partition coefficients (logKp) versus the temperature dependent sub-cooled vapour pressures (logp L 0 ) showed a gradient of −0.66, which deviated from equilibrium state (gradient = −1).  相似文献   
93.
Porosity is one of the most important physical properties in the rheology of small icy satellites composed of ice–silicate mixtures. Deformation experiments involving ice and 1 μm silica bead mixtures were conducted to clarify the effect of porosity on the flow law of ice–silica mixtures. Mixtures with silica mass contents of 0, 30, and 50 wt.% were used for the experiments, and the porosity was changed from 0% to 25% in each mixture. The temperature ranged from −10 to −20 °C, and the strain rate was changed from 1.2 × 10−6 to 4.2 × 10−4 s−1. As a result, it was found that the ice–silica mixtures deformed plastically, and that the relationship between the maximum stress, σmax, on the stress–strain curve and the applied strain rate, , could be described by the following flow law: . The mixture became softer as the porosity or silica mass content increased, and the stress exponent n and activation energy Q were independent of porosity, depending only on the silica mass content. Furthermore, the parameter A0 could be written as A0 = B(1 − ?)α, where ? is the porosity. The constants B and α also depended only on the silica mass content, and they increased with the increase in this content. The Maxwell relaxation time was calculated in order to estimate the conditions for topographic relaxation of icy satellites, and it was found that topographic relaxation occurred at temperatures higher than 160 K in the case of icy satellites with mean radii of 200 km.  相似文献   
94.
Abstract— In order to study the catastrophic disruption of porous bodies such as asteroids and planetesimals, we conducted several impact experiments using porous gypsum spheres (porosity: 50%). We investigated the fragment mass and velocity of disrupted gypsum spheres over a wide range of specific energies from 3 times 103 J/kg to 5 times 104 J/kg. We compared the largest fragment mass (m1/Mt) and the antipodal velocity (Va) of gypsum with those of non‐porous materials such as basalt and ice. The results showed that the impact strength of gypsum was notably higher than that of the non‐porous bodies; however, the fragment velocity of gypsum was slower than that of the non‐porous bodies. This was because the micro‐pores dispersed in the gypsum spheres caused a rapid attenuation of shock pressure in them. From these results, we expect that the collisional disruption of porous bodies could be significantly different from that of non‐porous bodies.  相似文献   
95.
96.
Masahiko  Yagi 《Island Arc》1993,2(4):240-261
Abstract Alteration of reservoir rocks in the Yurihara Oil and Gas Field, hereafter referred to as the ‘Yurihara field’, have been examined by using samples from six wells. These rocks are basalts in the lowermost part of the basin-fills (‘green tuff’ Formation). These basalts were produced in many eruptions in a submarine environment during the early to middle Miocene, and they underwent continuous intensive alteration genetically associated with Miocene submarine volcanism. The alteration of the basalts is of two types: low grade metamorphism and hydrothermal. The former belongs to the type of ocean floor metamorphism and comprises two subgroups: zeolite (zone I) and prehnite-pumpellyite (zones IIa: vein and amygdule occurrence, and IIb: replacing plagioclase). The latter is characterized by potassic metasomatism accompanied by adularia, quartz and calcite veins (zones IIIa: center and IIIb: margin of the metasomatism). This overprints the low grade metamorphic alteration. The central zone of hydrothermal alteration coincides with a major estimated fault, so that fluids probably assent along the fault. The basalts erupted during 16.5-15.5 Ma, determined by planktonic foraminifera assemblages of inter-bedded shales, then underwent successive low grade metamorphism. In time, the hydrothermal alteration that overprints low grade metamorphism occurred. Adularia veins of the altered rocks located in the hydrothermal alteration zones (zone IIIa and IIIb) have been dated as 9 Ma determined by the K-Ar method. This fact indicates that the activity of low grade metamorphism had already crossed the peak before hydrothermal alteration occurred at 9 Ma. The shape of isotherms of fluid inclusion homogenization temperatures (Th) and that of isolines of apparent salinity (Tm) almost coincide with each other, and these also coincide with the distribution of hydrothermal alteration (zones IIIa and IIIb). This indicates that the fluid inclusions formed at the same time as ascending fluids produced the potassic metasomatism. The maximum Th of the fluid inclusions is 222°C and Tm indicates trapped fluids of up to 3.3 wt% equivalent NaCl (i.e. almost the same as seawater). A Th versus Tm plot indicates mixing occurred between hydrothermal fluids and formation water that has low salinity. Corrensite and chlorite form veins, and the temperatures of their formation, estimated by the extent of aluminium substitution into the tetrahedral site of chlorite, ranges between 165 and 245°C in the centre of the hydrothermal alteration zone (zone IIIa). This is consistent with the result of Th analyses. The deposition temperature of chlorite associated with prehnite in veins ranges between 190 and 215°C in zones IIa and IIb.  相似文献   
97.
The mineralogy and mineral chemistry of Itokawa dust particles captured during the first and second touchdowns on the MUSES‐C Regio were characterized by synchrotron‐radiation X‐ray diffraction and field‐emission electron microprobe analysis. Olivine and low‐ and high‐Ca pyroxene, plagioclase, and merrillite compositions of the first‐touchdown particles are similar to those of the second‐touchdown particles. The two touchdown sites are separated by approximately 100 meters and therefore the similarity suggests that MUSES‐C Regio is covered with dust particles of uniform mineral chemistry of LL chondrites. Quantitative compositional properties of 48 dust particles, including both first‐ and second‐touchdown samples, indicate that dust particles of MUSES‐C Regio have experienced prolonged thermal metamorphism, but they are not fully equilibrated in terms of chemical composition. This suggests that MUSES‐C particles were heated in a single asteroid at different temperatures. During slow cooling from a peak temperature of approximately 800 °C, chemical compositions of plagioclase and K‐feldspar seem to have been modified: Ab and Or contents changed during cooling, but An did not. This compositional modification is reproduced by a numerical simulation that modeled the cooling process of a 50 km sized Itokawa parent asteroid. After cooling, some particles have been heavily impacted and heated, which resulted in heterogeneous distributions of Na and K within plagioclase crystals. Impact‐induced chemical modification of plagioclase was verified by a comparison to a shock vein in the Kilabo LL6 ordinary chondrite where Na‐K distributions of plagioclase have been disturbed.  相似文献   
98.
On the basis of observations using Cs‐corrected STEM, we identified three types of surface modification probably formed by space weathering on the surfaces of Itokawa particles. They are (1) redeposition rims (2–3 nm), (2) composite rims (30–60 nm), and (3) composite vesicular rims (60–80 nm). These rims are characterized by a combination of three zones. Zone I occupies the outermost part of the surface modification, which contains elements that are not included in the unchanged substrate minerals, suggesting that this zone is composed of sputter deposits and/or impact vapor deposits originating from the surrounding minerals. Redeposition rims are composed only of Zone I and directly attaches to the unchanged minerals (Zone III). Zone I of composite and composite vesicular rims often contains nanophase (Fe,Mg)S. The composite rims and the composite vesicular rims have a two‐layered structure: a combination of Zone I and Zone II, below which Zone III exists. Zone II is the partially amorphized zone. Zone II of ferromagnesian silicates contains abundant nanophase Fe. Radiation‐induced segregation and in situ reduction are the most plausible mechanisms to form nanophase Fe in Zone II. Their lattice fringes indicate that they contain metallic iron, which probably causes the reddening of the reflectance spectra of Itokawa. Zone II of the composite vesicular rims contains vesicles. The vesicles in Zone II were probably formed by segregation of solar wind He implanted in this zone. The textures strongly suggest that solar wind irradiation damage and implantation are the major causes of surface modification and space weathering on Itokawa.  相似文献   
99.
Shock pressure recorded in Yamato (Y)‐790729, classified as L6 type ordinary chondrite, was evaluated based on high‐pressure polymorph assemblages and cathodoluminescence (CL) spectra of maskelynite. The host‐rock of Y‐790729 consists mainly of olivine, low‐Ca pyroxene, plagioclase, metallic Fe‐Ni, and iron‐sulfide with minor amounts of phosphate and chromite. A shock‐melt vein was observed in the hostrock. Ringwoodite, majorite, akimotoite, lingunite, tuite, and xieite occurred in and around the shock‐melt vein. The shock pressure in the shock‐melt vein is about 14–23 GPa based on the phase equilibrium diagrams of high‐pressure polymorphs. Some plagioclase portions in the host‐rock occurred as maskelynite. Sixteen different CL spectra of maskelynite portions were deconvolved using three assigned emission components (centered at 2.95, 3.26, and 3.88 eV). The intensity of emission component at 2.95 eV was selected as a calibrated barometer to estimate shock pressure, and the results indicate pressures of about 11–19 GPa. The difference in pressure between the shock‐melt vein and host‐rock might suggest heterogeneous shock conditions. Assuming an average shock pressure of 18 GPa, the impact velocity of the parent‐body of Y‐790729 is calculated to be ~1.90 km s?1. The parent‐body would be at least ~10 km in size based on the incoherent formation mechanism of ringwoodite in Y‐790729.  相似文献   
100.
The predominant 1480 Ma granites and rhyolites of the St. Francois Mountains, southeastern Missouri, are intruded by mafic rocks. A 40Ar—39Ar study of some of these, the Skrainka Mafic Group, indicates an age of ~ 1240 Ma, significantly younger than the host rocks, significantly older than Grenville/Keweenawan age, and close to the age of similar rocks in Labrador.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号