首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   19篇
  国内免费   4篇
测绘学   3篇
大气科学   15篇
地球物理   74篇
地质学   85篇
海洋学   50篇
天文学   55篇
自然地理   3篇
  2024年   1篇
  2023年   1篇
  2021年   2篇
  2020年   7篇
  2019年   6篇
  2018年   7篇
  2017年   11篇
  2016年   4篇
  2015年   4篇
  2014年   15篇
  2013年   9篇
  2012年   12篇
  2011年   8篇
  2010年   11篇
  2009年   16篇
  2008年   13篇
  2007年   14篇
  2006年   15篇
  2005年   13篇
  2004年   10篇
  2003年   12篇
  2002年   6篇
  2001年   10篇
  2000年   7篇
  1999年   6篇
  1998年   8篇
  1997年   6篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1981年   4篇
  1980年   2篇
  1978年   3篇
  1977年   1篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1970年   3篇
排序方式: 共有285条查询结果,搜索用时 515 毫秒
211.
Kazuo Kimura 《Island Arc》1999,8(1):99-113
The geomorphology and related geostructures in the region of the dun valleys in Nepal (e.g. the Deukhuri Dun, the Chitwan Dun, the Hetauda Dun and the Trijuga Dun) have been surveyed in order to understand the neotectonics along the Himalayan front. The sub-Himalayan intermontane basins developed as piggyback basins located on the thrust-sheet of the Himalaya Front Fault (HFF equivalent to the Frontal Churia Thrust, the Main Siwalik Thrust or the Main Frontal Thrust). Each piggyback basin is a result of the north-northeast–south-southwest crustal shortening between the Indian Shield and the Himalayas. The evolution of the dun valleys is recorded as current reversals between the Upper Siwalik Group and the basin fills. The Upper Siwalik Group formed as piedmont alluvial fans distributed along the foot of the Lesser Himalaya and/or the Inner Churia Range, and show predominantly southerly current directions. In contrast, the basin fills distributed along the southern margin of the dun valleys formed by north-flowing drainage systems. The oldest basin fills of the piggyback basins appear to have commenced by the middle Pleistocene in the Deukhuri Dun and the Chitwan Dun, by the late Pleistocene in the Hetauda Dun, and by the latest Pleistocene in the Trijuga Dun. The diachronous evolution of the dun valleys suggest that the morphogenesis of the HFF zone was controlled by west-to-east propagation in late Quaternary time. These morphotectonics suggest the oblique-slip thrusting of the HFF zone which can be related to the oblique convergence between the Indian Shield and the Himalayas, and/or the counter-clockwise rotation of the Indian Subcontinent.  相似文献   
212.
Type 3 chondrites are subdivided into 3.0–3.9. Subtype 3.0 chondrites nearly preserve all of their primitive features. Many criteria have been proposed to distinguish such primitive chondrites. Here, we compiled mineral data and reconsider the petrologic classification criteria for subtype 3.0. Chondrites are classified into subtypes by the minor element distribution of olivine and textural and chemical features of Fe-Ni metal. The []Si4O8 and MgO components of feldspar also distinguish subtype 3.0 from subtypes ≥3.1. Other features, such as the occurrence of near pure chromite, are also indicators of subtype 3.0. It is difficult to distinguish between subtypes 3.0 and ≤2.9 based on mineral chemistry. Therefore, we propose the following criteria to distinguish between subtypes 3.0 and ≤2.9. In type 3.0 chondrites, major silicate (olivine, pyroxene, and plagioclase), oxide, metal, and sulfide minerals do not show aqueous alteration features. Melilite, anorthite, and glass show no or mild aqueous alteration features. Subtype 3.0 has not been identified in all chondrite groups. The absence of subtype 3.0 from some groups mainly reflects differences in the degrees of secondary parent body processes among the chondrite groups.  相似文献   
213.
Kimura  Reiji 《Natural Hazards》2020,103(2):2261-2276
Natural Hazards - Arid regions are highly vulnerable to climate change and human activity, and global warming in particular has the potential to increase the arid land area. One traditional way to...  相似文献   
214.
We investigated the relationship between variations in the thermal conductivity of surface sediments and the topography in the Nankai subduction zone off Tokai, central Japan, the easternmost part of the Nankai subduction zone, which has an accretionary prism with varied topography. We analyzed sediment thermal conductivity data obtained from the trough floor and accretionary prism. Variations in the thermal conductivity of sediments were related to the topographic features formed by accretionary prism development. Thermal conductivities of 1.1?W/m?K were measured on the trough floor where thick terrigenous turbidites have been deposited. The thermal conductivity of Nankai Trough floor sediments decreases from northeast to southwest along the trough, probably because of the decreased grain size and/or changes in sediment mineral composition. High thermal conductivities (??1.0?W/m?K) were measured in fault scarps on the accretionary prism. A landward increase in these values on the prism may be explained by decreased porosity of the sediments attributable to tectonic deformation during accretionary prism development. At the base of the fault scarp of the frontal thrust, low thermal conductivities (<0.9?W/m?K) were measured, likely reflecting the high porosity of the talus deposits. Low thermal conductivity (0.9?W/m?K) was also measured in slope basins on the accretionary prism, likely also related to the high porosity of the sediments. Our results demonstrate that, for accurate heat flow measurement in an area of varied topography, the geothermal gradient and the thermal conductivity of the sediments must be measured within regions with similar topographic features.  相似文献   
215.
216.
Abstract. Sulfur isotope ratios of cinnabar from Hg deposits and stibnite, jamesonite and berthierite from Sb deposits in Japan are examined in order to understand metallogeneses of Hg and Sb deposits in Japanese island arcs. The studied Hg and Sb deposits include the Hg deposit at Yamato‐suigin (Honshu) and the Sb deposit at Ichinokawa (Shikoku) in the Southwest Japan arc. In addition, Hg deposits including Itomuka and Ryushoden in central Hokkaido and Hg and Sb mineralizations in Northeast Japan arc are examined. The δ34S values of cinnabar from the Hidaka‐Kitami district, central Hokkaido, including the Itomuka and Ryushoden deposits range widely, from ‐10 to +16 %o, the highest values encountered at the Samani deposit. The δ34S values of cinnabar from other areas in Japan range from ‐12 to +5 %o, having δ34S values higher than +2 %o from southwestern Hokkaido (Meiji deposit), Shikoku (Suii deposit) and Kyushu (Hasami and Yamagano deposits). On the other hand, the δ34S values of stibnite from all areas in Japan range from ‐14 to +5 %o, having positive δ34S values higher than +2 %o up to +5 %o from southwestern Hokkaido (Yakumo, Toyotomi and Teine deposits) and eastern‐central Honshu (Hachiman and Daikoku deposits). The variation in δ34S values of Hg and Sb deposits may reflect the variation in δ34S values of country rocks or variation in mixing ratio of sulfur extracted from the country rocks, sulfur derived from seawater sulfate, and sulfur derived from magmatic emanations. The relatively high δ34S values of cinnabar and stibnite higher than +2 %o from southwestern Hokkaido, eastern‐central Honshu and Kyushu are probably caused by contribution of volcanic emanation from arc magmas having positive σδ34S values, whereas the positive δ34S values of cinnabar higher than +2 %o from Suii deposit in Shikoku may be attributed to structurally substituted sulfate in limestone country rocks and/or sulfur derived from seawater sulfate. However, the wide range of the δ34S values of cinnabar from the Hidaka‐Kitami district, central Hokkaido, is difficult to explain at this moment. Other relatively low, negative δ34S values of cinnabar and stibnite, berthierite from other areas in Japan may be attributed to 1) incorporation of isotopically light sedimentary sulfur or sulfur derived from ilmenite‐series silicic magma, or 2) less contribution of volcanic emanation from arc magmas having positive σδ34S values.  相似文献   
217.
Shock‐induced features are abundantly observed in meteorites. Especially, shock veins, including high‐pressure minerals, characterize many kinds of heavily shocked meteorite. On the other hand, no high‐pressure phases have been yet reported from enstatite chondrites. We studied a heavily shocked EH3 chondrite, Asuka 10164, containing a vein, which comprises fragments of fine‐grained silicate and opaque minerals, and chondrules. In this vein, we found a silica polymorph, coesite. This is the first discovery of a high‐pressure phase in enstatite chondrites. Other high‐pressure polymorphs were not observed in the vein. The assemblages and chemical compositions of minerals, and the occurrence of coesite indicate that the vein was subjected to the high‐pressure and temperature condition at about 3–10 GPa and 1000 °C. The host also experienced heating for a short time under lower temperature conditions, from ~700 to ~1000 °C, based on the opaque minerals typical of EH chondrites and textural features. Although the pressure condition of the vein in this chondrite is much lower than those in the other meteorites, our results suggest that all major meteorite groups contain high‐pressure polymorphs. Heavy shock events commonly took place in the solar system.  相似文献   
218.
Shock pressure recorded in Yamato (Y)‐790729, classified as L6 type ordinary chondrite, was evaluated based on high‐pressure polymorph assemblages and cathodoluminescence (CL) spectra of maskelynite. The host‐rock of Y‐790729 consists mainly of olivine, low‐Ca pyroxene, plagioclase, metallic Fe‐Ni, and iron‐sulfide with minor amounts of phosphate and chromite. A shock‐melt vein was observed in the hostrock. Ringwoodite, majorite, akimotoite, lingunite, tuite, and xieite occurred in and around the shock‐melt vein. The shock pressure in the shock‐melt vein is about 14–23 GPa based on the phase equilibrium diagrams of high‐pressure polymorphs. Some plagioclase portions in the host‐rock occurred as maskelynite. Sixteen different CL spectra of maskelynite portions were deconvolved using three assigned emission components (centered at 2.95, 3.26, and 3.88 eV). The intensity of emission component at 2.95 eV was selected as a calibrated barometer to estimate shock pressure, and the results indicate pressures of about 11–19 GPa. The difference in pressure between the shock‐melt vein and host‐rock might suggest heterogeneous shock conditions. Assuming an average shock pressure of 18 GPa, the impact velocity of the parent‐body of Y‐790729 is calculated to be ~1.90 km s?1. The parent‐body would be at least ~10 km in size based on the incoherent formation mechanism of ringwoodite in Y‐790729.  相似文献   
219.
Katagiri  Jun  Kimura  Sho  Noda  Shohei 《Acta Geotechnica》2020,15(8):2195-2203
Acta Geotechnica - This paper is a study of determination of representative elementary volume (REV) size suitable for pore-scale flow simulation (PFS) and evaluation of permeability anisotropy for...  相似文献   
220.
The inner part of Isahaya Bay was converted to a freshwater reservoir following the closure of the land claim dike in 1997. Turbid water drains into Isahaya Bay when water levels increase. We investigated whether particulate organic matter (POM) from the reservoir in Isahaya Bay has caused bottom organic enrichment in the northern part of Ariake Bay. Using potential end-members from before to after the rainy seasons, during which a frequent discharge from the reservoir was expected, stable isotope analyses were performed on sediments collected from Isahaya Bay and northern Ariake Bay. Each end-member was isotopically differentiated by δ13C and δ15N (riverine POM: ?28.5 to ?27.2‰ and 3.3–4.6‰; reservoir POM: ?25.7 to ?25.3‰ and 7.4–8.4‰; marine POM: ?21.8 to ?19.7‰ and 6.7–7.6‰; microphytobenthos estimated from consumers: ?16.1 to ?15.9‰ and 5.2–6.1‰, respectively). Sediment isotopic signatures fell within the mixing space defined by the signatures of the end-members. Marine POM contributed greatly to bottom sediments in both seasons in Isahaya Bay and Ariake Bay, ranging from ca. 60–70 and 40–60%, respectively. Reservoir POM contributed around 10% to bottom sediments. This percentage slightly increased in the sediment of Isahaya Bay after the rainy season, but decreased in the sediment of Ariake Bay. Thus, most of the POM discharged from the reservoir would not reach the northern part of Ariake Bay and would not be a major contributor to organic enrichment. This study is the first to quantitatively describe the contribution of drained reservoir POM outside Isahaya Bay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号