首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   687篇
  免费   35篇
  国内免费   7篇
测绘学   8篇
大气科学   66篇
地球物理   180篇
地质学   272篇
海洋学   68篇
天文学   53篇
综合类   3篇
自然地理   79篇
  2023年   4篇
  2022年   3篇
  2021年   7篇
  2020年   9篇
  2019年   12篇
  2018年   23篇
  2017年   14篇
  2016年   29篇
  2015年   16篇
  2014年   15篇
  2013年   54篇
  2012年   21篇
  2011年   37篇
  2010年   39篇
  2009年   46篇
  2008年   29篇
  2007年   32篇
  2006年   22篇
  2005年   26篇
  2004年   19篇
  2003年   29篇
  2002年   24篇
  2001年   13篇
  2000年   9篇
  1999年   14篇
  1998年   9篇
  1997年   5篇
  1996年   11篇
  1995年   10篇
  1994年   3篇
  1993年   10篇
  1992年   7篇
  1991年   4篇
  1990年   10篇
  1989年   5篇
  1988年   4篇
  1987年   5篇
  1986年   8篇
  1985年   12篇
  1984年   13篇
  1983年   7篇
  1982年   7篇
  1981年   7篇
  1980年   5篇
  1979年   5篇
  1978年   8篇
  1977年   6篇
  1976年   3篇
  1975年   3篇
  1971年   3篇
排序方式: 共有729条查询结果,搜索用时 15 毫秒
681.
The climatology of the moisture and heat budget equation terms for subareas within the South American Monsoon System (SAMS) region is investigated for the 1958–2014 period considering the distinct phases of the Pacific Decadal Oscillation (PDO). These budget equations are applied to the data from the National Centers for Environmental Prediction (NCEP) Reanalysis project. Sources or sinks of moisture and heat are equation residues, referred to as residue and diabatic terms, respectively. Analyses are done for the Central Amazon Basin (CAM) and Western-Central Brazil (WCB) for three distinct periods, 1958–1976, 1977–1995, and 1996–2014, that correspond to the cold, warm, and undefined PDO phases. The differences among the PDO phases for each term are discussed. The CAM region acts dominantly as a moisture sink and heat source in all months during the three phases. On the other hand, in the WCB region, the monsoon characteristics are better defined, with a moisture sink (source) and a heat source (sink) during the wet (dry) season. The main result of the present analysis is the persistence of SAMS intensification signs in both CAM and WCB areas up to the last analyzed period (1996–2014), which is consistent with intense flooding in the Amazon Basin in 2008/2009, 2012, and 2014.  相似文献   
682.
Local to regional climate anomalies are to a large extent determined by the state of the atmospheric circulation. The knowledge of large-scale sea level pressure (SLP) variations in former times is therefore crucial when addressing past climate changes across Europe and the Mediterranean. However, currently available SLP reconstructions lack data from the ocean, particularly in the pre-1850 period. Here we present a new statistically-derived 5° × 5° resolved gridded seasonal SLP dataset covering the eastern North Atlantic, Europe and the Mediterranean area (40°W–50°E; 20°N–70°N) back to 1750 using terrestrial instrumental pressure series and marine wind information from ship logbooks. For the period 1750–1850, the new SLP reconstruction provides a more accurate representation of the strength of the winter westerlies as well as the location and variability of the Azores High than currently available multiproxy pressure field reconstructions. These findings strongly support the potential of ship logbooks as an important source to determine past circulation variations especially for the pre-1850 period. This new dataset can be further used for dynamical studies relating large-scale atmospheric circulation to temperature and precipitation variability over the Mediterranean and Eurasia, for the comparison with outputs from GCMs as well as for detection and attribution studies.  相似文献   
683.
 Interactions involving various time and space scales, both within the tropics and between the tropics and midlatitudes, are ubiquitous in the climate system. We propose a conceptual framework for understanding such interactions whereby longer time scales and larger space scales set the base state for processes on shorter time scales and smaller space scales, which in turn have an influence back on the longer time scales and larger space scales in a continuum of process-related interactions. Though not intended to be comprehensive, we do cite examples from the literature to provide evidence for the validity of this framework. Decadal time scale base states of the coupled climate system set the context for the manifestation of interannual time scales (El Nino/Southern Oscillation, ENSO and tropospheric biennial oscillation, TBO) which are influenced by and interact with the annual cycle and seasonal time scales. Those base states in turn influence the large-scale coupled processes involved with intraseasonal and submonthly time scales, tied to interactions within the tropics and extratropics, and tropical–midlatitude teleconnections. All of these set the base state for processes on the synoptic and mesoscale and regional/local space scales. Events at those relatively short time scales and small space scales may then affect the longer time scale and larger space scale processes in turn, reaching back out to submonthly, intraseasonal, seasonal, annual, TBO, ENSO and decadal. Global coupled models can capture some elements of the decadal, ENSO, TBO, annual and seasonal time scales with the associated global space scales. However, coupled models are less successful at simulating phenomena at subseasonal and shorter time scales with hemispheric and smaller space scales. In the context of the proposed conceptual framework, the synergistic interactions of the time and space scales suggest that a high priority must be placed on improved simulations of all of the time and space scales in the climate system. This is particularly important for the subseasonal time scales and hemispheric and smaller space scales, which are not well simulated at present, to improve the prospects of successfully forecasting phenomena beyond the synoptic scales. Received: 3 April 2000/ Accepted: 6 November 2000  相似文献   
684.
Several thousand ships' logbooks havesurvived from the eighteenth and nineteenth centuries.They provide a valuable source of climaticinformation. This paper takes the Battle of Trafalgaras an example of how this source can be used toprovide a better knowledge and understanding ofweather and climate from those distant times. Thereliability of the non-instrumental climatic recordsof the logbooks is confirmed and a simple statisticalmeasure is used to quantify their degree ofconsistency. Reconstructions of daily weather patternsare made and a zonal index is calculated to representthe circulation patterns of the region. The movementsof pressure systems are plotted and indicate that thezonal index was negative (air pressure increasing fromsouth to north) for most of the month. The storm thatfollowed the battle is identified as one of notableseverity. This extreme behaviour is interpreted withinthe context of longer-term aspects of the contemporaryclimate.  相似文献   
685.
The physical characteristics of the summer monsoon clouds were investigated. The results of a simple cloud mod-el were compared with the aircraft cloud physical observations collected during the summer monsoon seasons of 1973,1974,1976 and 1981 in the Deccan Plateau region.The model predicted profiles of cloud liquid water content (LWC) are in agreement with the observed profiles. There is reasonable agreement between the model predicted cloud vertical thickness and observed rainfall.The observed cloud-drop spectra were found to be narrow and the concentration of drops with diameter >20μm is either low or absent on many occasions. In such clouds the rain-formation cannot take place under natural atmos-pheric conditions due to the absence of collision-coalescence process. A comparison of the model predicted and ob-served rainfall suggested that the precipitation efficiency in cumulus clouds of small vertical thickness could be as low as 20 per cent.The clouds forming in the Deccan Plateau region during the summer monsoon are, by and large, cumulus and strato-cumulus type. The vertical thickness of the cumulus clouds is in the range of 1.0-2.0 km. The LWC is found to be more in the region between 1.6-1.9 km A. S. L., which corresponds to the level at almost 3 / 4 th of the total verti-cal thickness of the cloud and thereafter the LWC sharply decreased. Nearly 98 per cent of the tops of the low clouds in the region are below freezing level and the most frequent range of occurrence of these cloud-tops is in the range of 2.0-3.0 km A. S. L.. The dominant physical mechanism of rain-formation in these summer monsoon clouds it the col-lision-coalescence process.  相似文献   
686.
Abstract

Rome has been plagued by flooding since its foundation, and, in December 2008, the largest flood event over the past 20 years caused a fatality and more than €150 million in economic damage. Meteorological conditions associated with the December 2008 flooding are shown to be typical of flooding in the Tiber. The long record of discharge measurements of the Tiber River at the Ripetta station in downtown Rome was used to examine flood frequency for the Tiber, including assessment of the return interval of the December 2008 flood. Particular attention is given to examination of the stationarity assumption for flood peaks through change-point and trend analyses, quantile regression, and statistical modelling of the flood-peak distribution. Once anthropogenic changes linked to reservoir regulation of the Tiber River have been accounted for, the stationarity assumption holds and can be used for flood frequency analysis. We highlight the difficulties in detecting departures from the stationarity assumption due to climate change. In the current regime, the December 2008 flood event has a return period of the order of 10–20 years.

Citation Villarini, G., Smith, J.A., Napolitano, F. & Baeck, M.L. (2011) Hydrometeorological analyses of the December 2008 flood in Rome. Hydrol. Sci. J. 56(7), 1150–1165.  相似文献   
687.
Simulating groundwater flow in a water‐table (unconfined) aquifer can be difficult because the saturated thickness available for flow depends on model‐calculated hydraulic heads. It is often possible to realize substantial time savings and still obtain accurate head and flow solutions by specifying an approximate saturated thickness a priori, thus linearizing this aspect of the model. This specified‐thickness approximation often relies on the use of the “confined” option in numerical models, which has led to confusion and criticism of the method. This article reviews the theoretical basis for the specified‐thickness approximation, derives an error analysis for relatively ideal problems, and illustrates the utility of the approximation with a complex test problem. In the transient version of our complex test problem, the specified‐thickness approximation produced maximum errors in computed drawdown of about 4% of initial aquifer saturated thickness even when maximum drawdowns were nearly 20% of initial saturated thickness. In the final steady‐state version, the approximation produced maximum errors in computed drawdown of about 20% of initial aquifer saturated thickness (mean errors of about 5%) when maximum drawdowns were about 35% of initial saturated thickness. In early phases of model development, such as during initial model calibration efforts, the specified‐thickness approximation can be a very effective tool to facilitate convergence. The reduced execution time and increased stability obtained through the approximation can be especially useful when many model runs are required, such as during inverse model calibration, sensitivity and uncertainty analyses, multimodel analysis, and development of optimal resource management scenarios.  相似文献   
688.
689.
 We use a digital elevation model (DEM) derived from interferometrically processed SIR-C radar data to estimate the thickness of massive trachyte lava flows on the east flank of Karisimbi Volcano, Rwanda. The flows are as long as 12 km and average 40–60 m (up to >140 m) in thickness. By calculating and subtracting a reference surface from the DEM, we derived a map of flow thickness, which we used to calculate the volume (up to 1 km3 for an individual flow, and 1.8 km3 for all the identified flows) and yield strength of several flows (23–124 kPa). Using the DEM we estimated apparent viscosity based on the spacing of large folds (1.2×1012 to 5.5×1012 Pa s for surface viscosity, and 7.5×1010 to 5.2×1011 Pa s for interior viscosity, for a strain interval of 24 h). We use shaded-relief images of the DEM to map basic flow structures such as channels, shear zones, and surface folds, as well as flow boundaries. The flow thickness map also proves invaluable in mapping flows where flow boundaries are indistinct and poorly expressed in the radar backscatter and shaded-relief images. Received: 6 September 1997 / Accepted: 15 May 1998  相似文献   
690.
An assessment of aquifer storage recovery using ground water flow models   总被引:3,自引:0,他引:3  
Lowry CS  Anderson MP 《Ground water》2006,44(5):661-667
Owing to increased demands on ground water accompanied by increased drawdowns, technologies that use recharge options, such as aquifer storage recovery (ASR), are being used to optimize available water resources and reduce adverse effects of pumping. In this paper, three representative ground water flow models were created to assess the impact of hydrogeologic and operational parameters/factors on recovery efficiency of ASR systems. Flow/particle tracking and solute transport models were used to track the movement of water during injection, storage, and recovery. Results from particle tracking models consistently produced higher recovery efficiency than the solute transport models for the parameters/properties examined because the particle tracking models neglected mixing of the injected and ambient water. Mixing between injected and ambient water affected recovery efficiency. Results from this study demonstrate the interactions between hydrogeologic and operational parameters on predictions of recovery efficiency. These interactions are best simulated using coupled numerical ground water flow and transport models that include the effects of mixing of injected water and ambient ground water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号