首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   10篇
  国内免费   4篇
测绘学   4篇
大气科学   17篇
地球物理   41篇
地质学   108篇
海洋学   15篇
天文学   27篇
自然地理   8篇
  2020年   4篇
  2019年   2篇
  2018年   4篇
  2017年   8篇
  2016年   7篇
  2015年   5篇
  2014年   5篇
  2013年   14篇
  2012年   19篇
  2011年   8篇
  2010年   10篇
  2009年   10篇
  2008年   10篇
  2007年   2篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   11篇
  2002年   12篇
  2001年   10篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   4篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1973年   2篇
  1970年   1篇
  1902年   1篇
排序方式: 共有220条查询结果,搜索用时 15 毫秒
81.
青藏高原北缘阿尔金东段中生代南北向伸展作用   总被引:7,自引:2,他引:5  
青藏高原北缘的阿尔金山脉东段发育了延伸大于300 km、东西走向的拉配泉断裂,为南倾的正断层,局部倾角可以低至30°以下。断层中段表现为30~50 m厚的韧性剪切带,发育有较好的糜棱岩组构和矿物伸展线理;东段和西段以碎裂变形为特征。断裂带内运动学标志,如不对称香肠构造、不对称褶皱和次级脆性和韧性断裂,都指示了上盘向南的正滑移剪切方式。两方面证据控制了拉配泉断裂的活动时代。首先,拉配泉断裂上盘局部产出早-中侏罗世沉积地层。侏罗系地层中的砾石,特别是其中的含叠层石硅质灰岩和紫色石英岩,可以与断裂下盘的岩石相对比。早-中侏罗世地层可能为拉配泉断裂之上的伸展盆地沉积。其次,拉配泉断裂下盘岩石的40Ar/39Ar热年代学分析给出2个明显的冷却事件。较老的事件出现在约220~187 Ma之间的三叠纪末期至侏罗纪早期,而年轻的事件出现在早白垩世的晚期(约100 Ma).约220~187 Ma之间的冷却年龄在拉配泉断裂下盘岩石中普遍存在,代表了拉配泉断裂正断作用的主要阶段。约100 Ma时,断裂东段的正断作用再次活动,该事件可能被南倾的恰什坎正断层运动所叠加而增强,并与拉配泉断裂的东段合并。这2条断裂具有共同的上盘向南的正滑移运动方式。青藏高原和东亚其它地区的中生代伸展作用可以归结为特提斯洋向北和太平洋向西俯冲形成的弧后伸展作用。   相似文献   
82.
Metatexite and diatexite migmatites are widely distributed within the upper amphibolite and granulite facies zones of the Higo low‐P/high‐T metamorphic terrane. Here, we report data from an outcrop in the highest grade part of the granulite facies zone, in which diatexite occurs as a 3 m thick layer between 2 m thick layers of stromatic‐structured metatexite within pelitic gneiss. The migmatites and gneiss contain the same peak mineral assemblage of biotite + plagioclase + quartz + garnet + K‐feldspar with retrograde chlorite ± muscovite and some accessory minerals of ilmenite ± rutile ± titanite + apatite + zircon + monazite ± pyrite ± zinc sulphide ± calcite. Calculated metamorphic P–T conditions are 800–900 °C and 9–12 kbar. Zircon in the diatexite forms elongate euhedral crystals with oscillatory zoning, but no core–rim structure. Zircon from the gneiss and metatexite forms euhedral–subhedral grains comprising inherited cores overgrown by thin rims. The overgrowth rims in the metatexite have lower Th/U ratios than zircon in the diatexite and yield a 206Pb/238U age of 116.0 ± 1.6 Ma, which is older than the 110.1 ± 0.6 Ma 206Pb/238U age derived from zircon in the diatexite. Zircon from the diatexite has variable REE contents with convex upward patterns and flat normalized HREE, whereas the overgrowth rims in the metatexite and gneiss have steep HREE‐enriched patterns; however, both types have similar positive Ce and negative Eu anomalies. 176Hf/177Hf ratios in the overgrowth rims from the metatexite are more variable and generally lower than values from zircon in the diatexite. Based on U–Pb ages, trace element and Hf isotope data, the zircon rims in the metatexite are interpreted to have crystallized from a locally derived melt, following partial dissolution of inherited protolith zircon during anatexis, whereas the zircon in the diatexite is interpreted to have crystallized from a melt that included an externally derived component. By integrating zircon and petrographic data for the migmatites and pelitic gneiss, the metatexite migmatite is interpreted to have formed by in situ partial melting in which the melt did not migrate from the source, whereas the diatexite migmatite included an externally derived juvenile component. The Cretaceous high‐temperature metamorphism of the Higo metamorphic terrane is interpreted to reflect emplacement of mantle‐derived basalts under a volcanic arc along the eastern margin of the Eurasian continent and advection of heat via hybrid silicic melts from the lower crust. Post‐peak crystallization of anatectic melts in a high‐T region at mid‐crustal depths occurred in the interval c. 116–110 Ma, as indicated by the difference in zircon ages from the metatexite and diatexite migmatites.  相似文献   
83.
Despite its location in the rain shadow of the southern Sierra Nevada, the Panamint Range hosts a complex mountain groundwater system supporting numerous springs which have cultural, historical, and ecological importance. The sources of recharge that support these quintessential desert springs remain poorly quantified since very little hydrogeological research has been completed in the Panamint Range. Here we address the following questions: (i) what is the primary source of recharge that supports springs in the Panamint Range (snowmelt or rainfall), (ii) where is the recharge occurring (mountain-block, mountain-front, or mountain-system) and (iii) how much recharge occurs in the Panamint Range? We answer questions (i) and (ii) using stable isotopes measured in spring waters and precipitation, and question (iii) using a chloride mass-balance approach which is compared to a derivation of the Maxey–Eakin equation. Our dataset of the stable isotopic composition (δ18O and δ2H) of precipitation is short (1.5 years), but analyses on spring water samples indicate that high-elevation snowmelt is the dominant source of recharge for these springs, accounting for 57 (±9) to 79 (±12) percent of recharge. Recharge from rainfall is small but not insignificant. Mountain-block recharge is the dominant recharge mechanism. However, two basin springs emerging along the western mountain-front of the Panamint Range in Panamint Valley appear to be supported by mountain-front and mountain-system recharge, while Tule Spring (a basin spring emerging at the terminus of the bajada on the eastern side of the Panamint Range) appears to be supported by mountain-front recharge. Calculated recharge rates range from 19 mm year−1 (elevations < 1000 mrsl) to 388 mm year−1 (elevations > 1000 mrsl). The average annual recharge is approximately 91 mm year−1 (equivalent to 19.4 percent of total annual precipitation). We infer that the springs in the Panamint Range (and their associated ecosystems) are extremely vulnerable to changes in snow cover associated with climate change. They are heavily dependent on snowmelt recharge from a relatively thin annual snowpack. These findings have important implications for the vulnerability of desert springs worldwide.  相似文献   
84.
A better understanding of the impact of changing temperatures on snow amounts is very important for the ski industry, but it is difficult to measure, particularly at different times of the snow season and not only on an annual or seasonal basis. Here, we analyze the snow day vs precipitation day ratios on a monthly basis from November to April in Switzerland and at 52 meteorological stations located between 200 and 2,700 m above sea level over a 48-year time span. Our results show that the conditions measured in the 1960s in November and March correspond to the present ones in December, January, and February.  相似文献   
85.
We present THERMAP, a mid-infrared spectro-imager for space missions to small bodies in the inner solar system, developed in the framework of the MarcoPolo-R asteroid sample return mission. THERMAP is very well suited to characterize the surface thermal environment of a NEO and to map its surface composition. The instrument has two channels, one for imaging and one for spectroscopy: it is both a thermal camera with full 2D imaging capabilities and a slit spectrometer. THERMAP takes advantage of the recent technological developments of uncooled microbolometer arrays, sensitive in the mid-infrared spectral range. THERMAP can acquire thermal images (8–18 μm) of the surface and perform absolute temperature measurements with a precision better than 3.5 K above 200 K. THERMAP can acquire mid-infrared spectra (8–16 μm) of the surface with a spectral resolution Δλ of 0.3 μm. For surface temperatures above 350 K, spectra have a signal-to-noise ratio >60 in the spectral range 9–13 μm where most emission features occur.  相似文献   
86.
J-Ph. Bernard  P. Ade  Y. André  J. Aumont  L. Bautista  N. Bray  P. de Bernardis  O. Boulade  F. Bousquet  M. Bouzit  V. Buttice  A. Caillat  M. Charra  M. Chaigneau  B. Crane  J.-P. Crussaire  F. Douchin  E. Doumayrou  J.-P. Dubois  C. Engel  P. Etcheto  P. Gélot  M. Griffin  G. Foenard  S. Grabarnik  P. Hargrave  A. Hughes  R. Laureijs  Y. Lepennec  B. Leriche  Y. Longval  S. Maestre  B. Maffei  J. Martignac  C. Marty  W. Marty  S. Masi  F. Mirc  R. Misawa  J. Montel  L. Montier  B. Mot  J. Narbonne  J-M. Nicot  F. Pajot  G. Parot  E. Pérot  J. Pimentao  G. Pisano  N. Ponthieu  I. Ristorcelli  L. Rodriguez  G. Roudil  M. Salatino  G. Savini  O. Simonella  M. Saccoccio  P. Tapie  J. Tauber  J.-P. Torre  C. Tucker 《Experimental Astronomy》2016,42(2):199-227
Future cosmology space missions will concentrate on measuring the polarization of the Cosmic Microwave Background, which potentially carries invaluable information about the earliest phases of the evolution of our universe. Such ambitious projects will ultimately be limited by the sensitivity of the instrument and by the accuracy at which polarized foreground emission from our own Galaxy can be subtracted out. We present the PILOT balloon project, which aims at characterizing one of these foreground sources, the polarized continuum emission by dust in the diffuse interstellar medium. The PILOT experiment also constitutes a test-bed for using multiplexed bolometer arrays for polarization measurements. This paper presents the instrument and its expected performances. Performance measured during ground calibrations of the instrument and in flight will be described in a forthcoming paper.  相似文献   
87.
88.
Riverbank erosion is a major contributor to catchment sediment budgets. At large spatial scales data is often restricted to planform channel change, with little information on process distributions and their sediment contribution. This study demonstrates how multi‐temporal LiDAR and high resolution aerial imagery can be used to determine processes and volumes of riverbank erosion at a catchment scale. Remotely sensed data captured before and after an extreme flood event, enabled a digital elevation model of difference (DoD) to be constructed for the channel and floodplain. This meant that: the spatial area that could be assessed was extensive; three‐dimensional forms of bank failures could be mapped at a resolution that enabled process inference; and the volume and rates of different bank erosion processes over time could be assessed. A classification of riverbank mass failures, integrating form and process, identified a total of 437 mass failure polygons throughout the study area. These were interpreted as wet flow mass failures based on the presence of a well defined scarp wall and the absence of failed blocks on the failure floor. The failures appeared to be the result of: bank exfiltration, antecedent moisture conditions preceding the event, and the historic development of the channel. Using one‐dimensional hydraulic modelling to delineate geomorphic features within the main boundary of the macrochannel, an estimated 1 466 322 m2 of erosion was interpreted as fluvial entrainment, occurring across catchment areas from 30 to 1668 km2. Only 8% of the whole riverbank planform area was occupied by mass failures, whilst fluvial entrainment covered 33%. A third of the volume of material eroded came from mass failures, even though they occupied 19% of the eroded bank area. The availability of repeat LiDAR surveys, combined with high‐resolution aerial photography, was very effective in erosion process determination and quantification at a large spatial scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
89.
Although much effort has been put into attempts to unravel the Mesozoic ophiuroid fossil record, surprisingly little attention has been paid to the geological history of family-level compositions of brittle star assemblages. Here, we describe new ophiuroid material from the Late Oxfordian Bure Member as exposed in a construction site along the federal Highway A16 (Transjurane Highway) near Boncourt–Queue au Loup (Swiss Jura Mountains). The remains are exceptionally well preserved and partially articulated, enabling detailed morphological observations at a level comparable to Recent material. Three species are identified; they are here shown to display unequivocal affinities with extant ophiuroid lineages. The assemblage comprises a new ophiacanthid genus and species, Juracantha hottingeri, which is closely related to extant Ophientrema, an ophiolepidid close to extant Ophiozonella described here as a new genus and species, Eozonella bergeri, and a species previously described as Ophiacantha? francojurassica, which is here reassigned to the extant ophionereidid genus Ophiodoris. The assemblage was found in association with Nanogyra oyster buildups encrusted by serpulids and associated with partially-articulated crinoids, deposited in a shallow subtidal setting. Its family level composition is highly unusual with respect to modern equivalents, and instead is reminiscent of modern bathyal assemblages.  相似文献   
90.
MarcoPolo-R near earth asteroid sample return mission   总被引:3,自引:0,他引:3  
MarcoPolo-R is a sample return mission to a primitive Near-Earth Asteroid (NEA) proposed in collaboration with NASA. It will rendezvous with a primitive NEA, scientifically characterize it at multiple scales, and return a unique sample to Earth unaltered by the atmospheric entry process or terrestrial weathering. MarcoPolo-R will return bulk samples (up to 2?kg) from an organic-rich binary asteroid to Earth for laboratory analyses, allowing us to: explore the origin of planetary materials and initial stages of habitable planet formation; identify and characterize the organics and volatiles in a primitive asteroid; understand the unique geomorphology, dynamics and evolution of a binary NEA. This project is based on the previous Marco Polo mission study, which was selected for the Assessment Phase of the first round of Cosmic Vision. Its scientific rationale was highly ranked by ESA committees and it was not selected only because the estimated cost was higher than the allotted amount for an M class mission. The cost of MarcoPolo-R will be reduced to within the ESA medium mission budget by collaboration with APL (John Hopkins University) and JPL in the NASA program for coordination with ESA’s Cosmic Vision Call. The baseline target is a binary asteroid (175706) 1996 FG3, which offers a very efficient operational and technical mission profile. A binary target also provides enhanced science return. The choice of this target will allow new investigations to be performed more easily than at a single object, and also enables investigations of the fascinating geology and geophysics of asteroids that are impossible at a single object. Several launch windows have been identified in the time-span 2020–2024. A number of other possible primitive single targets of high scientific interest have been identified covering a wide range of possible launch dates. The baseline mission scenario of MarcoPolo-R to 1996 FG3 is as follows: a single primary spacecraft provided by ESA, carrying the Earth Re-entry Capsule, sample acquisition and transfer system provided by NASA, will be launched by a Soyuz-Fregat rocket from Kourou into GTO and using two space segment stages. Two similar missions with two launch windows, in 2021 and 2022 and for both sample return in 2029 (with mission duration of 7 and 8?years), have been defined. Earlier or later launches, in 2020 or 2024, also offer good opportunities. All manoeuvres are carried out by a chemical propulsion system. MarcoPolo-R takes advantage of three industrial studies completed as part of the previous Marco Polo mission (see ESA/SRE (2009)3, Marco Polo Yellow Book) and of the expertise of the consortium led by Dr. A.F. Cheng (PI of the NASA NEAR Shoemaker mission) of the JHU-APL, including JPL, NASA ARC, NASA LaRC, and MIT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号