首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8811篇
  免费   424篇
  国内免费   66篇
测绘学   269篇
大气科学   640篇
地球物理   2844篇
地质学   3145篇
海洋学   448篇
天文学   1410篇
综合类   41篇
自然地理   504篇
  2022年   53篇
  2021年   139篇
  2020年   161篇
  2019年   157篇
  2018年   332篇
  2017年   332篇
  2016年   458篇
  2015年   349篇
  2014年   380篇
  2013年   520篇
  2012年   415篇
  2011年   407篇
  2010年   383篇
  2009年   447篇
  2008年   364篇
  2007年   307篇
  2006年   292篇
  2005年   253篇
  2004年   244篇
  2003年   217篇
  2002年   182篇
  2001年   158篇
  2000年   158篇
  1999年   111篇
  1998年   137篇
  1997年   124篇
  1996年   97篇
  1995年   113篇
  1994年   109篇
  1993年   78篇
  1992年   73篇
  1991年   83篇
  1990年   80篇
  1989年   67篇
  1988年   72篇
  1987年   73篇
  1986年   64篇
  1985年   74篇
  1984年   64篇
  1983年   63篇
  1982年   76篇
  1981年   73篇
  1980年   71篇
  1979年   57篇
  1978年   65篇
  1977年   61篇
  1975年   53篇
  1974年   57篇
  1973年   64篇
  1971年   53篇
排序方式: 共有9301条查询结果,搜索用时 343 毫秒
841.
842.
Three methods for estimation of the pressure wavefield generated by a marine airgun array are tested experimentally and compared. In the trial a variety of radiation angles and array configurations were used and some large synchronization errors were deliberately introduced. The source was equipped with near-field hydrophones and a subsource ministreamer. A tethered far-field hydrophone was used so that the three estimated far-field signatures could be compared with an independent measurement. The knowledge of the source signature is important for on-board source array QC, deconvolution, multiple attenuation, stratigraphic trap prediction, modelling and inversion, AVO analysis and reservoir monitoring. The methods perform very well and give estimates whose frequency-domain spectra match the measured spectra to within a few dB and within a few tens of degrees of phase over the tested bandwidth of 3.5–110 Hz. The time-domain error-energy is typically only a few per cent of the signal energy for radiation angles within about 30° of the vertical. The third method proved to be sensitive to an experimental shortcoming leading to overloading of the ministreamer and meaningful comparison was not possible for some test configurations.  相似文献   
843.
Modeling a Complex Multi-Aquifer System: The Waterloo Moraine   总被引:6,自引:0,他引:6  
  相似文献   
844.
—Systematic variations of the seismic radial anisotropy ξ to depths of 200–250 km in North America and Eurasia and their surroundings are related to the age of continental provinces, and typical depth dependences of ξ R are determined. The relative radial anisotropy ξ R in the mantle lithosphere of Phanerozoic orogenic belts is characterized by ν SH > ν SV , with its maximum depth of about 70 km, on the average, while beneath old shields and platforms, it exhibits a maximum deviation from ACY400 model (Montagner and Anderson, 1989) at depths of about 100 km with ν SV ν SH signature. An interpretation of the observed seismic anisotropy by the preferred orientation of olivine crystals results in a model of the mantle lithosphere characterized by anisotropic structures plunging steeply beneath old shields and platforms, compared to less inclined anisotropies beneath Phanerozoic regions. This observation supports the idea derived from petrological and geochemical observations that a mode of continental lithosphere generation may have changed throughout earth's history.  相似文献   
845.
Albian/Cenomanian benthic foraminiferal faunas recovered by the DSDP in the western South Atlantic Ocean (Leg 36) are described and analyzed from the palaeogeographic and palaeo-environmental points of view. In doing this the author compares Leg 36 assemblages in the western South Atlantic Ocean with coeval benthic foraminiferal faunas recovered in the eastern South Atlantic Ocean (Leg 40) and in the eastern Indian Ocean (Legs 26 and 27). The specific composition of these assemblages, except for Leg 27, is virtually the same. Consequently, they are considered to indicate the same depositional water depth at all relevant sites studied, whether located in the Angola Basin, the northern flank of the Walvis Ridge, the eastern margin of the Falkland Plateau or on the Naturaliste Plateau. All the assemblages indicate shallow environments around 100 m and not exceeding 300–400 m in the deepest parts, corresponding to the inner shelf and the inner part of the outer shelf. By contrast the foraminiferal associations of Leg 27 (especially Site 259) indicate a greater depth, of the order of 200–600 m (but not exceeding 1000 m) corresponding to upper slope of Sliter & Baker (1972) and Sliter (1972). These bathymetrical conclusions are in remarkable accord with those of Sliter (1976), based on planktic Foramini fera of Leg 36.Late Cretaceous (Campanian-Maastrichtian) material with benthic Foraminifera was limited to two positive samples; however, these faunas indicate much the same palaeo-environment as do the planktic ones analyzed by Sliter (1976).  相似文献   
846.
847.
The Kaapvaal intrageosyncline, one of the oldest cratonic basins of the Precambrian shield areas, offers an almost complete record of deposition and diastrophism that occurred between c. 1,4 and 3,0 Ga B.P. Its tectonic development started after the consolidation of the Early Archaean crustal structure when sequences such as the Pongola, Dominion Reef and Witwatersrand accumulated in a tectonically stable environment between c. 2,4 and 3,0 Ga B.P. This early epeirogenic or platformal stage was followed by a period of deposition of the Ventersdorp, Transvaal and Waterberg-Matsap sequences between c. 1,4 and 2,4 Ga B.P. Gravity-induced deformation which culminated in post-Matsap folding in the northern Cape and in post-Waterberg faulting in parts of the northern Transvaal and Botswana, affected portions of the basin situated close to the boundary of the craton with surrounding mobile belts. In Late Precambrian times the tectonic activity was either insignificant or it was again confined to the marginal zones of the craton (e. g. partial tectonic reactivation of the Lower Proterozoic sequences in the foreland of the Namaqua Mobile Belt between c. 0,9 and 1,25 Ga B.P.).Although the Kaapvaal basin represents an epeirogenic feature, the structure of its marginal parts displays some of the characteristics of orogenic belts (e. g. the linearity of fold structures in the Matsap synclinorium in the northern Cape and its uniform vergence towards the axis of the Waterberg-Matsap basin). However, the deformation of sequences in the Kaapvaal basin was not associated with magma generation, and the metamorphism operative in the basin during the Lower Proterozoic was only of burial type.The depositional and deformational history of the platform cover in the tectonically labile marginal zones of the Kaapvaal Craton is related to the tectonic evolution of the adjoining mobile belts. This can be shown by the example of the Namaqua Belt and its foreland in the northern Cape where continuity of certain geological units and tectonic structures exists across the front of the mobile belt. This continuity, together with the similar timing of the tectonic events in the mobile belt and on the craton, points to a common cause for the broad movements of uplift and subsidence on the craton, and for the profound deformation in restricted zones along its margin and in adjoining mobile belts.
Zusammenfassung Die Kaapvaal-Intrageosynkline ist eines der ältesten bekannten kratonischen Becken, und ihre Entwicklungsgeschichte kann über einen Zeitraum von 1,6 Milliarden Jahren verfolgt werden.Das Becken entstand in einem früh-epigenetischen oder Plattform-Stadium, als die Pongola-, Dominion-Reef- und Witwatersrand-Schichten vor ca. 3,0 bis 2,4 Milliarden Jahren auf die konsolidierte frühpräkambrische Kruste abgelagert wurden. In einem weiteren Sedimentationszyklus folgten die Ventersdorp-, Transvaal- und Waterberg-Matsap-Schichten vor 2,4 bis 1,4 Milliarden Jahren. Gravitationsfaltung, die ihren Höhepunkt mit der Matsap-Deformation in der nördlichen Kapprovinz erreichte, und Störungsbewegungen im nördlichen Transvaal und in Botswana haben das Becken randlich im Grenzbereich zwischen Kraton und den umgebenden mobilen Zonen beeinflußt. Tektonische Bewegungen im Spätpräkambrium waren entweder unbedeutend oder sie spielten sich wiederum im Randbereich des Beckens ab (z. B. tektonische Rejuvenation von frühproterozoischen Gesteinen im Vorland des Namaqua-Mobile-Belt von ca 0,9 bis 1,25 Milliarden Jahren).Obwohl das Kaapvaal-Becken epirogenen Charakter aufweist, so zeigen doch die Strukturen in seinem Randbereich oft orogene Züge. Die Deformation im Beckeninneren war jedoch nicht von Magmaintrusionen begleitet, und während des Frühproterozoikums wurde die Beckenfüllung lediglich von einer geringen Versenkungsmetamorphose erfaßt.Die Sedimentations- und Deformationsgeschichte der Plattform-Serien im tektonisch labilen Randbereich des Kaapvaal-Kratons ist eng mit der strukturellen Entwicklung in den benachbarten mobilen Zonen verbunden. Dies wird am Beispiel des Namaqua-Mobile-Belt und seines Vorlandes in der nördlichen Kapprovinz gezeigt, wo bestimmte geologische Einheiten und Strukturen vom mobilen Bereich in den kratonischen Bereich verfolgt werden können. Diese Kontinuität und der zeitliche Zusammenhang zwischen Deformation immobile belt und auf dem Kraton deuten auf eine gemeinsame Ursache für die weitgespannten epirogenetischen Bewegungen im Beckenbereich und die orogene Tektonik am Rande des Kratons hin.Der Unterschied zwischen stabilen und mobilen Bereichen ist wahrscheinlich auf unterschiedliche Krustendicke und -stärke zurückzuführen, so daß die gleichen tektonischen (orogenen) Bewegungen einerseits zu alpinotypen Strukturen führen, während sie in starken (d. h. schon verfestigten) Krustenteilen germanotype Verformung und Epirogenese zur Folge haben. Orogene oder epirogene Bewegungen hängen daher entweder von verschiedenartiger tektonischer Beanspruchung benachbarter Krustenteile während eines bestimmten Zeitraumes ab, oder sie spiegeln fundamentale Veränderungen in einem bestimmten Krustenbereich im Laufe seiner Entwicklungsgeschichte wider.Ein Beispiel für den ersten Fall ist die in vorliegender Arbeit beschriebene unterschiedliche Entwicklung des Kaapvaal-Beckens und des benachbarten Namaqua-Mobile-Belt im Frühproterozoikum, während letzterer Fall durch die spätarchaische Kratonisierung des Kaapvaal-Grundgebirges und die nachfolgende Evolution der Kaapvaal-Plattform charakterisiert ist.

Résumé Le Kaapvaal intragéosynclinal, un des plus vieux bassins cratoniques connus des boucliers précambriens, apporte un record presque complet de sédimentation et de diastrophisme qui apparut entre 1400 Ma et 3000 Ma. Son développement tectonique commença après la stabilisation tectonique de la croûte de l'Archéen moyen quand des séries telles que le Pongola, le Dominion Reef et le Witwatersrand se furent déposées dans un milieu tectoniquement stable entre 2400 Ma et 3000 Ma. Cette époque épéiro-génique précoce fut suivie par la période de sédimentation des séries du Ventersdorp, du Transvaal et du Waterberg-Matsap, entre 1400 Ma et 2400 Ma. Le plissement par gravitation qui culmina avec la déformation de Matsap dans le Nord de la province du Cap et par le décrochement post-Waterberg dans certaines parties du Nord du Transvaal et du Botswana, influença les parties du bassin placées en bordure entre le craton et les zones mobiles qui l'entouraient.L'activité tectonique entre 1400 Ma et 600 Ma fut ou insignifiquante ou à nouveau se limita aux parties marginales du craton (c'est à dire une réactivation tectonique partielle des séries du Protérozoïque inférieur dans l'avant-pays de la zone mobile du Namaqualand, entre 900 Ma et 1250 Ma).Bien que le bassin de Kaapvaal montre un caractère épirogénique, les structures des parties marginales montrent cependant quelques traits caractéristiques pour les ceintures orogéniques. La déformation des séries de l'intérieur du bassin du Kaapvaal ne fut cependant pas accompagnée d'intrusions magmatiques, et pendant le Protérozoïque ancien le comblement du bassin fut affecté seulement d'un léger métamorphisme d'enfouissement.L'histoire de la sédimentation et de la déformation des séries de plateforme dans le domaine marginal tectoniquement labile du craton du Kaapvaal est mis en relation avec l'évolution structurale des zones mobiles voisines. C'est ce que montre l'exemple du «Namaqua Mobile Belt» et de son avant-pays dans la province septentrionale du Cap où s'établit la continuité entre la zone mobile et le craton. Cette continuité, et aussi la liaison dans le temps entre la déformation dans la zone mobile et dans le craton, indiquent une cause commune pour les grands mouvements de soulèvement et de subsidence dans le domaine du bassin et pour la déformation profonde en bordure du craton.La différence entre les domaines stables et mobiles est à rapporter vraissemblablement à des épaisseurs et à des résistances différentes de la croûte, de sorte que les mêmes mouvements tectoniques (orogéniques) d'une part conduisent à des structures alpinotypes, tandis que d'autre part dans les parties de la croûtes suffisamment fortes (c'est-à-dire déjà consolidées) ils ont pour effet une déformation germanotype et une épirogenèse. Les mouvements orogéniques ou épirogéniques ou bien dépendent de sollicitations tectoniques de type différent entre parties de la croûte voisines pendant une durée déterminée, ou bien ils reflètent des modifications fondamentales dans un domaine déterminé de la croûte au cours de son développement historique.Un exemple du premier cas est donné par le développement différentiel, décrit dans le présent travail du bassin du Kaapvaal et de la Ceinture mobile du Namaque, voisine, au cours du Protérozoïque ancien, tandis que le dernier cas est donné par la cratonisation, à la fin de l'Archéen, du socle du Kaapvaal et par l'évolution de la plateforme du Kaapvaal qui l'a suivie.

— ; 1,6 . - , , , 3,0 2,4 , - . — 2,4 1,4 — , -. — —, , . , . - 0,9–1,25 .) , , . , , , . . , . , . , , — . , , . , — .
  相似文献   
848.
Nine samples from the Monte Rosa Granite have been investigated by microscopic, X-ray, wet chemical, electron microprobe, stable isotope and Rb-Sr and K-Ar methods. Two mineral assemblages have been distinguished by optical methods and dated as Permian and mid-Tertiary by means of Rb-Sr age determinations. The Permian assemblage comprises quartz, orthoclase, oligoclase, biotite, and muscovite whereas the Alpine assemblage comprises quartz, microcline, albite+epidote or oligoclase, biotite, and phengite. Disequilibrium between the Permian and Alpine mineral assemblages is documented by the following facts: (i) Two texturally distinguishable generations of white K-mica are 2 M muscovite (Si=3.1–3.2) and 2 M or 3 T phengite (Si=3.3–3.4). Five muscovites show Permian Rb-Sr ages and oxygen isotope fractionations indicating temperatures between 520 and 560 ° C; however, K-Ar ages are mixed or rejuvenated. Phengite always shows mid-Tertiary Rb-Sr ages, (ii) Two biotite generations can be recognized, although textural evidence is often ambiguous. Three out of four texturally old biotites show mid-Tertiary Rb-Sr cooling ages while the oxygen isotopic fractionations point to Permian, mixed or Alpine temperatures, (iii) Comparison of radiogenic and stable isotope relations indicates that the radiogenic isotopes in the interlayer positions of the micas were mobilized during Alpine time without recrystallization, that is, without breaking Al-O or Si-O bonds. High Ti contents in young muscovites and biotites also indicate that the octahedral (and tetrahedral) sites remained undisturbed during rejuvenation. (iv) Isotopic reversals in the order of O18 enrichment between K-feldspar and albite exist. Arguments for equilibrium during Permian time are meagre because of Alpine overprinting effects. Texturally old muscovites show high temperatures and Permian Rb-Sr ages in concordancy with Rb-Sr whole rock ages. For the tectonically least affected samples, excellent concordance between quartz-muscovite and quartz-biotite Permian temperatures implies oxygen isotope equilibrium in Permian time which was undisturbed during Alpine metamorphism. Arguments for equilibrium during the mid-Tertiary metamorphism are as follows: (i) Mid-Tertiary Rb-Sr mineral isochrons of up to six minerals exist, (ii) Oxygen isotope temperatures of coexisting Alpine phengites and biotites are concordant.The major factor for the adjustment of the Permian assemblages to Alpine conditions was the degree of Alpine tectonic overprinting rather than the maximum temperatures reached during the mid-Tertiary Alpine metamorphism. The lack of exchange with externally introduced fluid phases in the samples least affected by tectonism indicates that the Monte Rosa Granite stewed in its own juices. This seems to be the major cause for the persistence of Permian ages and corresponding temperatures.  相似文献   
849.
This paper on “Temperature changes in earth-history” is an extension of a lecture given as an introduction to a section of equal title on the annual meeting of the Geologische Vereinigung, March 1976, in Hannover. The general development of paleoclimatological research in the last 300 years is represented on two diagrams (fig. 1–2) showing also the part of different climatic indicators. Otherwise, however, mostly new results and problems of the last years are treated (mainly papers since 1973; references of older literature are to be found in the 3rd edition of the author's book on “Climates of the Past” = “Klima der Vorzeit”, Enke/Stuttgart 1974). This paper refers a) to some short comments on certain climatic indicators as diamictites (a similar term isSchermerhorn's “mixtite”, but “diamictite” is 6 years older and has therefore priority to “mixtite”) and “stellate nodules” (in the chapter “Mesozoic”) indicating perhaps cool climate in the Arctic. - b) Some great ice-ages are briefly discussed: Huronian (very important because of its old age); Late Proterozoic (“Eocambrian”) with many problems on account of its pretended worldwide extension. but with many uncertainities (partly pseudotillites, inconsistent paleomagnetic poles, combination of tillites with dolomites etc.); Permo-Carboniferous (many hypothesises up to 1975 try to explain the pretended “equatorial” position of tillites); Cenozoic ice-age (once “Quaternary” ice-age), with table 1 indicating some possibilities to evaluate the beginning of glaciations in Tertiary time (fig. 4). Why does glaciation start in Antarctica in the Tertiary? (Not or not only on account of drift via South Pole, but perhaps because of high relief and changes in global paleogeography). — c) Diagram of the great ice-ages in earth-history (fig. 6 b): it probably shows not all ice-ages but only the known ones indicating their maxima (i. e. times when inlandice extended to middle latitudes). This curve is probably essentially correct back to 300–400 m. y. yet especially the Precambrian time is still mostly paleoclimatic noman's-land. It is not possible to fix beginning and end of the Pre-Tertiary ice-ages exactly but at any rate the “akryogene” climates lasted longer than the “kryogene” ones (“kryogene” defined as climate with “much ice” [“pleistokryogene”], “akryogene” not as climate “without ice” but as climate with “a little ice” [“oligokryogene”]). - d) Periodicities in the temperature history: before exact dates were available (especially for Late Proterozoic and Huronian ice-ages) and before the Sahara glaciation of the Old Paleozoic was known, a periodicity of 250–300 m. y. was likely to exist. Therefore relations to the “Galactic year” were reasonable, stimulating attempts to find out plausible mechanisms for such a relation. But now, such a periodicity seems unlikely to exist (and much more one of 155 m. y., supposed byWilliams). The relative constancy of global earth temperatures over at least more than 2 billion years is more striking than their variations, though regionally the depressions may be very conspicious (in the middle, “sensitive” latitudes). Such depressions, however, are triggered by very small climatic changes on account of the existence of a hydrosphere with temperatures very favorable for a transformation of water into ice and vice versa. No other celestial body of our solar system has these optimal conditions with the consequences of occasional initiation of ice-ages. Ice ages, so to speak, are an inherited pecularity of the earth. The earth is the only “Ice-age Planet”. Under these circumstances, relatively small factors may cause ice-ages: multilateral origin of climatic changes. The most efficient parameters may be paleogeographic variations (relief etc. inclusive continental drift). Some comments are made on the radiation curves reflecting not the direct cause of glacials and interglacials but perhaps shorter climatic variations as they appear possibly in the curves of ocean temperatures (Emiliani etc.). Volcanic ashes seem not to have any farreaching influence on global temperatures; at least it is geologically impossible to support appropriate hypothesises by observations on continental volcanic sequences. The number of ash-layers in deep-sea cores may reveal sounder arguments though much more observations are needed to corroborate this supposition. — Table 2 gives a summary of the primary (planetary), secondary (multilateral) and — in special situations — tertiary “autocyclic” causes of climatic changes. Table 3 focuses on autocycles i. e. mechanisms which run. off automatically and could have caused the regular climatic variations in the Late Pleistocene with the classic glacialinterglacial sequence (not known from the older Quaternary or Pre-Tertiary ice-ages). In my opinion the most probable hypothesises on autocycles are those which were founded on wide extending subarctic continents of the northern hemisphere (qualified for the formation of large inlandice) in combination with mighty oceanic heat storage (Stokes, D. P. Adam, R. E. Newell).  相似文献   
850.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号