首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   525篇
  免费   31篇
  国内免费   2篇
测绘学   36篇
大气科学   44篇
地球物理   155篇
地质学   163篇
海洋学   31篇
天文学   85篇
综合类   3篇
自然地理   41篇
  2023年   3篇
  2022年   7篇
  2021年   18篇
  2020年   9篇
  2019年   14篇
  2018年   27篇
  2017年   23篇
  2016年   22篇
  2015年   25篇
  2014年   25篇
  2013年   32篇
  2012年   20篇
  2011年   26篇
  2010年   22篇
  2009年   31篇
  2008年   25篇
  2007年   27篇
  2006年   31篇
  2005年   17篇
  2004年   18篇
  2003年   9篇
  2002年   19篇
  2001年   11篇
  2000年   5篇
  1999年   6篇
  1998年   3篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1986年   3篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1976年   4篇
  1975年   4篇
  1974年   2篇
  1971年   4篇
  1967年   3篇
  1966年   2篇
  1965年   2篇
  1963年   3篇
  1962年   3篇
  1959年   2篇
  1958年   2篇
  1957年   2篇
排序方式: 共有558条查询结果,搜索用时 828 毫秒
341.
One of the most important functions of catchments is the storage of water. Catchment storage buffers meteorological extremes and interannual streamflow variability, controls the partitioning between evaporation and runoff, and influences transit times of water. Hydrogeological data to estimate storage are usually scarce and seldom available for a larger set of catchments. This study focused on storage in prealpine and alpine catchments, using a set of 21 Swiss catchments comprising different elevation ranges. Catchment storage comparisons depend on storage definitions. This study defines different types of storage including definitions of dynamic and mobile catchment storage. We then estimated dynamic storage using four methods, water balance analysis, streamflow recession analysis, calibration of a bucket‐type hydrological model Hydrologiska Byråns Vattenbalansavdelning model (HBV), and calibration of a transfer function hydrograph separation model using stable isotope observations. The HBV model allowed quantifying the contributions of snow, soil and groundwater storages compared to the dynamic catchment storage. With the transfer function hydrograph separation model both dynamic and mobile storage was estimated. Dynamic storage of one catchment estimated by the four methods differed up to one order of magnitude. Nevertheless, the storage estimates ranked similarly among the 21 catchments. The largest dynamic and mobile storage estimates were found in high‐elevation catchments. Besides snow, groundwater contributed considerably to this larger storage. Generally, we found that with increasing elevation the relative contribution to the dynamic catchment storage increased for snow, decreased for soil, but remained similar for groundwater storage.  相似文献   
342.
Glacial denudation can significantly perturb terrestrial cosmogenic nuclide depth profiles and, if this is not corrected for, derived apparent denudation rates will overestimate the actual denudation rates. Here we determine how much 10Be‐derived denudation rates – calculated under the assumption of steady state – deviate from actual denudation rates as a function of three parameters: (1) the total amount of glacial denudation, (2) the post‐glacial denudation rate and (3) the time elapsed since deglaciation. We provide correction lines for the full parameter space explored (glacial denudation: 0.01–100 m; post‐glacial denudation rate: 1–1000 mm/ka; deglaciation: 1–100 ka before present), to evaluate and, if necessary, correct denudation rates for the impact of glacial denudation. Applied to 10Be‐derived catchment‐averaged denudation rates for formerly glaciated catchments in the Black Forest, Germany, we find that uncorrected denudation rates overestimate actual rates by up to a factor of three.  相似文献   
343.
344.
In this study, we use records of nitrogen isotope ratios (δ15N), UK’37 temperature estimates, organic carbon and opal percentages from high-resolution sediment cores located in the eastern equatorial Pacific (EEP) to explore the mechanisms linking millennial-scale changes in low-latitude sea surface temperature, water column denitrification and surface productivity to the timing of northern or southern polar climate during the last 100,000 yr. Our results support a hypothesis that the Southern Hemisphere, and its connection to the low latitudes via shallow subsurface ocean circulation, has a primary influence on the biogeochemistry of the EEP. In addition, our results suggest that, during the last glacial stage, denitrification rates fluctuated on millennial timescales in response to water-column ventilation rather than upstream oxidant demand in intermediate-depth waters.However, due to the poor age constraints available for Marine Isotopic Stage (MIS) 3, the EEP sedimentary data presented here could support two conflicting mechanisms, one driven by enhanced intermediate overturning circulation in the Southern Ocean during Heinrich Events/Antarctic Warm Events, implying that subsurface flow rates control thermocline ventilation, and a second one consistent with more sluggish intermediate circulation during Antarctic Warm Events and giving a central role to the temperature control on oxygen solubility in Southern Ocean surface waters.  相似文献   
345.
346.
347.
Arctic deltas, such as the Mackenzie Delta, are expected to face major climate change and increased human influence in the near future. Deltas are characterised by highly dynamic fluvial processes, and changing climate will cause considerable evolution of the riverine environment. The changes are difficult to predict with existing knowledge and data. This study quantified channel planform change of the Mackenzie Delta (1983–2013), analysing its temporal and spatial patterns. We addressed the main obstacle of research on large remote areas, the lack of data, by developing a unique work flow that utilised Landsat satellite imagery, hydrological time series, remote sensing‐based change analysis, and automatic vectorisation of channels. Our results indicate that the Mackenzie Delta experienced constant evolution but at a highly varying rate over the 30 years. The study demonstrates that the magnitude and duration of flood peaks and the presence of spring ice breakup floods determine the rate of Arctic delta planform change. Changing winter conditions and spring flood magnitudes may therefore affect the stability of Arctic deltas. However, no clear trends towards decreased recurrence or magnitude of spring floods or increased instability of the delta plain have yet been observed in the Mackenzie Delta. The delta plain was most dynamic at the beginning and at the end of the examined period, corresponding to intense flooding, whereas the rates of change were subtle during the low‐flood period 1994–2007. The largest changes have occurred along the wide Middle Channel and in the outermost delta. Relative to their size, however, smaller meandering channels have been highly dynamic. Hotspots of change in the delta plain are located in anastomosing and braiding channel segments and, at the local scale, in point bars and cut‐banks along meandering channels. Our study describes how Landsat satellite data can be utilised for advancing fluvial geomorphological research in remote areas. However, cloudiness in the delta restricts production of dense time series with simultaneous coverage of the whole area and requires manual preprocessing.  相似文献   
348.
Subsurface dissolution (subrosion) of evaporites such as halite and gypsum can lead to extensive land subsidence. Recent land subsidences have been surveyed at six separate locations in northwestern Switzerland. The diameters of the affected surface areas range from 100 to 1,500 m, and corresponding subsidence rates reached more than 100 mm/year. Based on a geometrical model, three sites could be outlined where land subsidence can likely be attributed to salt solution mining. The effects of increased hydrostatic gradient due to both groundwater withdrawal and fluid density contrasts were evaluated in more detail for the remaining sites with a series of 2D density-coupled solute-transport simulations along an approximately 1,000-m-long and 150-m-deep 2D cross section. Simulation results indicate that the upconing process of saline groundwater into the main aquifer occurs under different distributions of subsurface parameters and hydraulic boundary conditions. For the presented setup, the simulations also revealed that the most sensitive factor for the dissolution rate is the structure or dip of the halite formation, which leads to an increase of dissolution rate with increasing dip. Due to the increased density of the brine, an intrinsic flow dynamic develops which follows the direction of the dip.  相似文献   
349.
It is a broadly accepted fact that a clear reduction of global GHG emissions is required to limit the increase of global warming to a tolerable level. A key issue in this context is the optimal breakdown of reduction targets among different world regions or even countries. Using the European Commission-funded PLANETS project, cost-optimal global burden sharing to reach global GHG reduction targets was analysed, and an optimal allocation of GHG reductions was identified, relative to the global target, to the commitments of different world regions and the trade possibilities for emission certificates. Specifically, it is evaluated how Europe can contribute in a cost-optimal way to keeping the global concentration of GHGs in the atmosphere below 530 parts per million equivalent (ppme) or below a stricter global reduction target of 500 ppme. Based on the energy system model TIMES PanEU, the potentials for emissions reduction in the different energy sectors and EU Member States and the role of key technologies are analysed. The most cost-effective potentials for GHG reductions in Europe are in the conversion/production, residential and industrial sectors. Substantial reductions in the transport sector occur only under very stringent reduction targets. Achieving ambitious reduction targets requires considerable contributions from all EU Member States until 2050.  相似文献   
350.
Increasing number of geohazards, like mass movements, is one of the main environmental impacts following the impoundment of the Yangtze River and its tributaries due to the inventory of the Three Gorges Dam hydroelectric power plant. Although many cities and settlements are endangered, no detailed hazard mapping is possible because of the huge size of the affected area. Due to strongly limited data availability, a robust landslide susceptibility model was established exemplarily for the Xiangxi catchment as one of the main tributaries. The analyses were limited to translational, rotational and combined landslides in soft rock sediments because these represent the main types of mass movement activity in this area. The qualitative landslide susceptibility analysis was carried out by a combination of frequency ratio analyses and a heuristic iterative index-based method using a Geographical Information System. As conditioning factors, the parameters lithology, slope angle, -aspect, -curvature, drainage buffer distance and land use were applied. To improve the objectivity of the index-based method, the results of frequency ratio analyses were taken into consideration to assess the importance of each factor. Model verification and evaluation by ground truth enable to improve the model by iterative calculations and to identify the best performance model. Results indicate that 89 % of all known landslides are located within areas showing high susceptibility according to the best performance model. The study demonstrates that a rather simple but robust model achieves good results and is applicable for regional landslide susceptibility analyses in mountainous areas with poor data availability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号