首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2936篇
  免费   137篇
  国内免费   32篇
测绘学   68篇
大气科学   227篇
地球物理   728篇
地质学   992篇
海洋学   262篇
天文学   442篇
综合类   14篇
自然地理   372篇
  2024年   5篇
  2023年   6篇
  2022年   8篇
  2021年   54篇
  2020年   47篇
  2019年   55篇
  2018年   64篇
  2017年   66篇
  2016年   89篇
  2015年   89篇
  2014年   91篇
  2013年   179篇
  2012年   139篇
  2011年   185篇
  2010年   141篇
  2009年   167篇
  2008年   154篇
  2007年   161篇
  2006年   142篇
  2005年   125篇
  2004年   124篇
  2003年   108篇
  2002年   99篇
  2001年   71篇
  2000年   64篇
  1999年   59篇
  1998年   53篇
  1997年   37篇
  1996年   43篇
  1995年   29篇
  1994年   34篇
  1993年   32篇
  1992年   28篇
  1991年   27篇
  1990年   24篇
  1989年   23篇
  1988年   25篇
  1987年   29篇
  1986年   24篇
  1985年   31篇
  1984年   30篇
  1983年   21篇
  1982年   26篇
  1981年   23篇
  1980年   18篇
  1979年   15篇
  1978年   8篇
  1977年   7篇
  1974年   6篇
  1972年   4篇
排序方式: 共有3105条查询结果,搜索用时 46 毫秒
451.
We report the complex spatial and temporal dynamics of hyporheic exchange flows (HEFs) and nitrogen exchange in an upwelling reach of a 200 m groundwater-fed river. We show how research combining hydrological measurement, geophysics and isotopes, together with nutrient speciation techniques provides insight on nitrogen pathways and transformations that could not have been captured otherwise, including a zone of vertical preferential discharge of nitrate from deeper groundwater, and a zone of rapid denitrification linking the floodplain with the riverbed. Nitrate attenuation in the reach is dominated by denitrification but is spatially highly variable. This variability is driven by groundwater flow pathways and landscape setting, which influences hyporheic flow, residence time and nitrate removal. We observed the spatial connectivity of the river to the riparian zone is important because zones of horizontal preferential discharge supply organic matter from the floodplain and create anoxic riverbed conditions with overlapping zones of nitrification potential and denitrification activity that peaked 10–20 cm below the riverbed. Our data also show that temporal variability in water pathways in the reach is driven by changes in stage of the order of tens of centimetres and by strength of water flux, which may influence the depth of delivery of dissolved organic carbon. The temporal variability is sensitive to changes to river flows under UK climate projections that anticipate a 14%–15% increase in regional median winter rainfall and a 14%–19% reduction in summer rainfall. Superimposed on seasonal projections is more intensive storm activity that will likely lead to a more dynamic and inherently complex (hydrologically and biogeochemically) hyporheic zone. We recorded direct evidence of suppression of upwelling groundwater (flow reversal) during rainfall events. Such flow reversal may fuel riverbed sediments whereby delivery of organic carbon to depth, and higher denitrification rates in HEFs might act in concert to make nitrate removal in the riverbed more efficient.  相似文献   
452.
453.
454.
zobov (ZOnes Bordering On Voidness) is an algorithm that finds density depressions in a set of points, without any free parameters, or assumptions about shape. It uses the Voronoi tessellation to estimate densities, which it uses to find both voids and subvoids. It also measures probabilities that each void or subvoid arises from Poisson fluctuations. This paper describes the zobov algorithm, and the results from its application to the dark matter particles in a region of the Millennium simulation. Additionally, the paper points out an interesting high-density peak in the probability distribution of dark matter particle densities.  相似文献   
455.
456.
Using photometric data from the Two-Micron All-Sky Survey (2MASS) and GLIMPSE catalogues, I investigate the incidence of mid-infrared (mid-IR) excesses  (∼10 μm)  in G and K stars of luminosity class III. In order to obtain a large sample size, stars are selected using a near-IR colour–magnitude diagram. Sources which are candidates for showing mid-IR excess are carefully examined and modelled to determined whether they are likely to be G/K giants. It is found that mid-IR excesses are present at a level of  (1.8 ± 0.4) × 10−3  . While the origin of these excesses remains uncertain, it is plausible that they arise from debris discs around these stars. I note that the measured incidence is consistent with a scenario in which dust lifetimes in debris discs are determined by Poynting–Robertson drag rather than by collisions.  相似文献   
457.
Abstract— A fragment of an L6 chondrite (Allan Hills [ALH] 85017,13) with an initial mass (M0) of 464.1 g was the target in a series of experimental impacts in which the largest remaining fragment (MR) after each shot was impacted by a 3.18 mm ceramic sphere at a nominal speed of 2 km s?1. This continued until the mass of the largest remaining piece was less than half the mass of the target presented to that shot (MS). Two chunks of Bushveldt gabbro with similar initial masses were also impacted under the same conditions until MR was less than half M0. The two gabbro targets required a total of 1.51 × 107 and 1.75 × 107 erg g?1 to attain 0.27 and 0.33 MR/M0, respectively; the chondrite, however, was considerably tougher, reaching 0.40 and 0.21 MR/M0 only after receiving 2.37 × 107 and 3.10 × 107 erg g?1, respectively. The combined ejecta and spallation products from the gabbro impacts were coarser than those from the chondrite and in sufficient quantities that the new surface areas exceeded those from the meteorite until the fifth shot in the chondrite series, which was the number of impacts required to disrupt each gabbro target (i.e., MR/M0 ≤ 0.5). Unlike the behavior shown in previous regolith‐evolution series, neither gabbro target produced an enhancement in the size fraction reflecting the mean size of the crystals composing the rock (about 3 mm), an effect possibly related to the width of the shock pulse. The original chondrite was so fine‐grained and fractured, and the variance in its grain‐size distribution so large, that effects related to grain size were relegated to the<63 μm fraction. Impacts into ALH 85017 produced abundant, fine‐grained debris, but otherwise the slopes of its size distributions were comparable to those from other experiments involving natural and fabricated terrestrial targets. The characteristic slopes of the chondrite's size distributions, however, were notably more constant over the entire nine‐impact series than those from any of the terrestrial targets, a testament to the control over comminution apparently exerted by pre‐existing fractures and other, microscopic damage in the meteorite. The enhancement in the finer fraction of debris from ALH 85017 indicates that ordinary chondrites in solar orbit would be very efficient contributors to the cosmic‐dust complex. At the same time, the greater resistance to disruption displayed by ordinary chondrites relative to that exhibited by igneous rocks indicates that a selection effect could be operative between the annealed, ordinary‐chondritic breccias and relatively weaker, differentiated meteorites. Preferential survival from their time in the regoliths of their parent bodies through their transit to Earth and passage through the atmosphere suggests that meteorite collections could be biased in favor of the ordinary chondrites.  相似文献   
458.
We present new observations of Jupiter's ring system at a wavelength of 2.2 μm obtained with the 10-m W.M. Keck telescopes on three nights during a ring plane crossing: UT 19 December 2002, and 22 and 26 January 2003. We used conventional imaging, plus adaptive optics on the last night. Here we present detailed radial profiles of the main ring, halo and gossamer rings, and interpret the data together with information extracted from radio observations of Jupiter's synchrotron radiation. The main ring is confined to a 800-km-wide annulus between 128,200 and 129,000 km, with a ∼5000 km extension on the inside. The normal optical depth is 8×10−6, 15% of which is provided by bodies with radii a?5 cm. These bodies are as red as Metis. Half the optical depth, τ≈4×10−6, is attributed to micron-sized dust, and the remaining τ≈3×10−6 to grains tens to hundreds of μm in size. The inward extension consists of micron-sized (a?10 μm) dust, which probably migrates inward under Poynting-Robertson drag. The inner limit of this extension falls near the 3:2 Lorentz resonance (at orbital radius r=122,400 km), and coincides with the outer limit of the halo. The gossamer rings appear to be radially confined, rather than broad sheets of material. The Amalthea ring is triangularly shaped, with a steep outer dropoff over ∼5000 km, extending a few 1000 km beyond the orbit of Amalthea, and a more gradual inner dropoff over 15,000-20,000 km. The inner edge is near the location of the synchronous orbit. The optical depth in the Amalthea ring is ∼5×10−7, up to 20% of which is comprised of macroscopic material. The optical depth in the Thebe ring is a factor of 3 smaller.  相似文献   
459.
John Parnell  Darren Mark 《Icarus》2008,197(1):282-290
A 1 cm thick sandstone disk exposed to atmospheric re-entry on the heat shield of a spacecraft (the STONE 5 experiment) shows alteration of fluid inclusions compared to a control sample. The sandstone contained inclusions in quartz grains, feldspar grains and calcite cement before flight. After flight, inclusions in the feldspar were all decrepitated, few inclusions in calcite survived intact and they yielded widely varying microthermometric data, and the quartz inclusions also yielded disturbed microthermometric data. The quartz becomes less affected with depth below the surface, and extrapolation suggests would be unaffected at a depth of about 2 cm. These data show that fluid inclusion data from meteorites must be treated with caution, but that a genuine fluid record may survive in the interior portions. The possibility of thermal sterilization to 2 cm depth also implies that small meteorites may be unsuitable vehicles for the transfer of microbial life from one planetary body to another. As the interiors of larger meteorites tend to have very low porosity and permeability, microbial colonization would be difficult, and the potential for panspermia is accordingly low.  相似文献   
460.
The ceramics in use across a broad upland zone of central Arizona during the early Classic period (ca. A.D. 1100–1300) were characterized by a lack of mineralogical variability; nearly all of the clay containers were tempered with one rock type, phyllite. Consequently, nearly all of the upland pottery is assigned to a single pottery type, Wingfield Plain. This compositional uniformity has frustrated ceramic provenance studies, and, as a result, little has been learned previously about the organization of ceramic production and exchange in the upland territory. There are, however, considerable and interpretable chemical differences in the phyllite‐tempered wares, as shown with microanalyses of the temper fragments and pottery clay fractions with an electron microprobe. The chemical patterning is useful for investigating issues pertaining to the upland zone, including the organization of ceramic manufacture, community arrangements, and pottery transactions during a time of prevalent hostilities in central Arizona. © 2008 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号