首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2933篇
  免费   137篇
  国内免费   32篇
测绘学   68篇
大气科学   227篇
地球物理   726篇
地质学   992篇
海洋学   262篇
天文学   441篇
综合类   14篇
自然地理   372篇
  2023年   6篇
  2022年   8篇
  2021年   53篇
  2020年   47篇
  2019年   55篇
  2018年   64篇
  2017年   66篇
  2016年   89篇
  2015年   89篇
  2014年   91篇
  2013年   179篇
  2012年   139篇
  2011年   185篇
  2010年   141篇
  2009年   167篇
  2008年   154篇
  2007年   161篇
  2006年   142篇
  2005年   125篇
  2004年   124篇
  2003年   108篇
  2002年   99篇
  2001年   71篇
  2000年   64篇
  1999年   59篇
  1998年   53篇
  1997年   37篇
  1996年   43篇
  1995年   29篇
  1994年   34篇
  1993年   32篇
  1992年   28篇
  1991年   27篇
  1990年   24篇
  1989年   23篇
  1988年   25篇
  1987年   29篇
  1986年   24篇
  1985年   31篇
  1984年   30篇
  1983年   21篇
  1982年   26篇
  1981年   23篇
  1980年   18篇
  1979年   15篇
  1978年   8篇
  1977年   7篇
  1975年   4篇
  1974年   6篇
  1972年   4篇
排序方式: 共有3102条查询结果,搜索用时 312 毫秒
441.
In recent years artificial neural networks (ANNs) have been applied to many geotechnical engineering problems with some degree of success. With respect to the design of pile foundations, accurate prediction of pile settlement is necessary to ensure appropriate structural and serviceability performance. In this paper, an ANN model is developed for predicting pile settlement based on standard penetration test (SPT) data. Approximately 1000 data sets, obtained from the published literature, are used to develop the ANN model. In addition, the paper discusses the choice of input and internal network parameters which were examined to obtain the optimum model. Finally, the paper compares the predictions obtained by the ANN with those given by a number of traditional methods. It is demonstrated that the ANN model outperforms the traditional methods and provides accurate pile settlement predictions.  相似文献   
442.
The X- and W-band single-crystal electron paramagnetic resonance spectra of an electron-irradiated natural quartz permit quantitative analysis of a 29Si hyperfine structure (A ~12.6 MHz) and an 27Al hyperfine structure (A ≤ 0.8 MHz) for a previously reported hole-like center. The 29Si hyperfine structure arises from interaction with two equivalent Si atoms and is characterized by the direction of the unique A axis close to a Si–O bond direction. The 27Al hyperfine structure, confirmed by pulsed electron nuclear double resonance and electron spin echo envelope modulation spectra, is characterized by the unique A axis approximately along a twofold symmetry axis. These 29Si and 27Al hyperfine data, together with published theoretical results on peroxy radicals in SiO2 as well as our own density functional theory (DFT) calculations on model peroxy centers, suggest this hole-like center to have the unpaired spin on a pair of oxygen atoms linked to two symmetrically equivalent Si atoms and a substitutional Al3+ ion across the c-axis channel, a first peroxy radical in quartz. The nuclear quadrupole matrix P also suggests that the Al3+ ion corresponds closely to the diamagnetic precursor to the [AlO4]0 center. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
443.
In 1994, a directed fishing moratorium was declared for Grand Bank American plaice (Hippoglossoides platessoides) and yellowtail flounder (Limanda ferruginea) stocks because both stocks showed severe declines in abundance from heavy exploitation during the mid 1980s and early 1990s. Four years later, the fishery for yellowtail re-opened while the plaice stock has shown little recovery and the moratorium is still in effect. To assess the possible causes of the differences in recovery between species, we examined the spatial structure and environmental characteristics of the continental shelf nursery habitats of plaice and yellowtail, and their relationship to recruitment variability and overall population size. Depth plays a major influential role determining the spatial pattern and the abundance of juveniles of both species and in the case of plaice the spatial structure of the adult population also determines the amount of nursery area utilised by juveniles. Recruitment variability was higher in plaice than in yellowtail. We found year class synchrony in both species indicating that common environmental conditions and/or biological processes are affecting recruitment in a similar manner. Density-dependent regulation appears to be more severe in yellowtail and this should contribute to a more stable population when compared to plaice. These results are discussed in terms of resiliency of both stocks to over-exploitation.  相似文献   
444.
445.
We investigate the ability of modern general circulation models (GCMs) to simulate transport in the martian atmosphere using measurements of argon as a proxy for the transport processes. Argon provides the simplest measure of transport as it is a noble gas with no sinks or sources on seasonal timescales. Variations in argon result solely from ‘freeze distillation’, as the atmosphere condenses at the winter poles, and from atmospheric transport. Comparison of all previously published models when rescaled to a common definition of the argon enhancement factor (EF) suggest that models generally do a poor job in predicting the peak enhancement in southern winter over the winter pole – the time when the capability of the model transport approaches are most severely tested. Despite observed peak EF values of ~6, previously published model predictions peaked at EF values of only 2–3. We introduce a new GCM that provides a better treatment of mass conservation within the dynamical core, includes more sophisticated tracer transport approaches, and utilizes a cube–sphere grid structure thus avoiding the grid-point convergence problem at the pole that exists for most current Mars GCMs. We describe this model – the Ashima Research/Massachusetts Institute of Technology Mars General Circulation Model (Ashima/MIT Mars GCM) and use it to demonstrate the significant sensitivity of peak EF to the choices of transport approach for both tracers and heat. We obtain a peak EF of 4.75 which, while over 50% higher than any prior model, remains well short of the observed value. We show that the polar EF value in winter is primarily determined by the competition between two processes: (1) mean meridional import of lower-latitude air not enriched in argon and (2) the leakage of enriched argon out of the polar column by eddies in the lowest atmospheric levels. We suggest possibilities for improving GCM representation of the CO2 cycle and the general circulation that may further improve the simulation of the argon cycle. We conclude that current GCMs may be insufficient for detailed simulation of transport-sensitive problems like the water cycle and potentially also the dust cycle.  相似文献   
446.
Abstract– The grains returned by NASA’s Stardust mission from comet 81P/Wild 2 represent a valuable sample set that is significantly advancing our understanding of small solar system bodies. However, the grains were captured via impact at ~6.1 km s?1 and have experienced pressures and temperatures that caused alteration. To ensure correct interpretations of comet 81P/Wild 2 mineralogy, and therefore preaccretional or parent body processes, an understanding of the effects of capture is required. Using a two‐stage light‐gas gun, we recreated Stardust encounter conditions and generated a series of impact analogs for a range of minerals of cometary relevance into flight spare Al foils. Through analyses of both preimpact projectiles and postimpact analogs by transmission electron microscopy, we explore the impact processes occurring during capture and distinguish between those materials inherent to the impactor and those that are the product of capture. We review existing and present additional data on olivine, diopside, pyrrhotite, and pentlandite. We find that surviving crystalline material is observed in most single grain impactor residues. However, none is found in that of a relatively monodisperse aggregate. A variety of impact‐generated components are observed in all samples. Al incorporation into melt‐derived phases allows differentiation between melt and shock‐induced phases. In single grain impactor residues, impact‐generated phases largely retain original (nonvolatile) major element ratios. We conclude that both surviving and impact‐generated phases in residues of single grain impactors provide valuable information regarding the mineralogy of the impacting grain whilst further studies are required to fully understand aggregate impacts and the role of subgrain interactions during impact.  相似文献   
447.
Abstract– Particles from comet 81P/Wild 2 were captured with silica aerogel during the flyby Stardust mission. A significant part of the collection was damaged during the impact at hypervelocity in the aerogel. In this study, we conducted impact experiments into aerogel of olivine and pyroxene powder using a light‐gas gun in similar conditions as that of the comet Wild 2 particles collection. The shot samples were investigated using transmission electron microscopy to characterize their microstructure. Both olivine and pyroxene samples show evidence of thermal alteration due to friction with the aerogel. All the grains have rounded edges after collection, whereas their shape was angular in the initial shot powder set. This is probably associated with mass loss of particles. The rims of the grains are clearly melted and mixed with aerogel. The core of olivine grains is fairly well preserved, but some grains contain dislocations in glide configuration. We interpret these dislocations as generated by the thermal stresses that have emerged due to the high temperature gradients between the core and the rim of the grains. Most of the pyroxene grains have been fully melted. Their high silica concentration reflects a strong impregnation with melted aerogel. The preferential melting of pyroxene compared with olivine is due to a difference in melting temperatures of 300°. This melting point difference probably induces a bias in the measurements of the ratio olivine/pyroxene in the Wild 2 comet. The proportion of pyroxene was probably higher on Wild 2 than expected from the samples collected into aerogel.  相似文献   
448.
The Bonneville basin, located in north-western Utah, is a vast evaporite basin which is home to the world-renowned Bonneville Salt Flats international speedway and is a highly valued landscape undergoing rapid change and anthropogenic influence. Air quality, snowpack, the local hydrological system, and state tourism are all impacted by the nature of the surface sediments exposed in the Bonneville basin. Mapping the Bonneville basin over time with remote sensing methods provides insight into the dynamics and impacts of the changing surface landscape. Utilizing the Landsat-5 Thematic Mapper (TM) and Landsat-8 Operational Land Imager (OLI) sensors, a set of band math indices are empirically established to map the predominant halite, gypsum, and carbonates mineralogical zones of the Bonneville basin. Spectral comparisons of representative samples from the study area and image-derived spectra indicate the halite of the Bonneville basin is wet and that gypsum deposits are slightly mixed with halite. The established indices are assessed in four ways, all of which support the ability of the indices to accentuate the associated mineralogical endmembers. Two study areas within the Bonneville basin are investigated temporally from 1986, 1995, 2005, and 2016 and show changing patterns in mineral distribution that align with surface processes active through these timescales. These indices provide a resource for mapping mineralogy though time in evaporite basins globally with diverse applications for questions about land use and environmental change.  相似文献   
449.
We report the complex spatial and temporal dynamics of hyporheic exchange flows (HEFs) and nitrogen exchange in an upwelling reach of a 200 m groundwater-fed river. We show how research combining hydrological measurement, geophysics and isotopes, together with nutrient speciation techniques provides insight on nitrogen pathways and transformations that could not have been captured otherwise, including a zone of vertical preferential discharge of nitrate from deeper groundwater, and a zone of rapid denitrification linking the floodplain with the riverbed. Nitrate attenuation in the reach is dominated by denitrification but is spatially highly variable. This variability is driven by groundwater flow pathways and landscape setting, which influences hyporheic flow, residence time and nitrate removal. We observed the spatial connectivity of the river to the riparian zone is important because zones of horizontal preferential discharge supply organic matter from the floodplain and create anoxic riverbed conditions with overlapping zones of nitrification potential and denitrification activity that peaked 10–20 cm below the riverbed. Our data also show that temporal variability in water pathways in the reach is driven by changes in stage of the order of tens of centimetres and by strength of water flux, which may influence the depth of delivery of dissolved organic carbon. The temporal variability is sensitive to changes to river flows under UK climate projections that anticipate a 14%–15% increase in regional median winter rainfall and a 14%–19% reduction in summer rainfall. Superimposed on seasonal projections is more intensive storm activity that will likely lead to a more dynamic and inherently complex (hydrologically and biogeochemically) hyporheic zone. We recorded direct evidence of suppression of upwelling groundwater (flow reversal) during rainfall events. Such flow reversal may fuel riverbed sediments whereby delivery of organic carbon to depth, and higher denitrification rates in HEFs might act in concert to make nitrate removal in the riverbed more efficient.  相似文献   
450.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号