首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3007篇
  免费   119篇
  国内免费   32篇
测绘学   69篇
大气科学   232篇
地球物理   739篇
地质学   1004篇
海洋学   267篇
天文学   450篇
综合类   14篇
自然地理   383篇
  2024年   5篇
  2023年   7篇
  2022年   8篇
  2021年   56篇
  2020年   48篇
  2019年   56篇
  2018年   65篇
  2017年   69篇
  2016年   91篇
  2015年   90篇
  2014年   95篇
  2013年   183篇
  2012年   141篇
  2011年   187篇
  2010年   142篇
  2009年   167篇
  2008年   155篇
  2007年   163篇
  2006年   144篇
  2005年   126篇
  2004年   125篇
  2003年   109篇
  2002年   99篇
  2001年   72篇
  2000年   64篇
  1999年   60篇
  1998年   54篇
  1997年   37篇
  1996年   43篇
  1995年   30篇
  1994年   35篇
  1993年   32篇
  1992年   30篇
  1991年   26篇
  1990年   24篇
  1989年   23篇
  1988年   26篇
  1987年   29篇
  1986年   24篇
  1985年   31篇
  1984年   31篇
  1983年   21篇
  1982年   26篇
  1981年   23篇
  1980年   20篇
  1979年   15篇
  1978年   9篇
  1977年   8篇
  1974年   5篇
  1972年   4篇
排序方式: 共有3158条查询结果,搜索用时 15 毫秒
31.
The contribution of emissions from agricultural facilities is rapidly becoming a major concern for local and regional air quality. Characterization of particle properties such as physical size distribution and chemical composition can be valuable in understanding the processes contributing to emissions and ultimate fate of particulate matter from agricultural facilities. A measurement campaign was conducted at an Iowa, deep-pit, three-barn swine finishing facility to characterize near-source ambient particulate matter. Size-specific mass concentrations were determined using minivol samplers, with additional size distribution information obtain using optical particle counters. Particulate composition was determined via ion chromatographic analysis of the collected filters. A thermal-CO2 elemental/organic carbon analyzer measured particulate carbon. The chemical composition and size distribution of sub-micron particles were determined via real-time aerosol mass spectrometry. Primary particulate was not found to be a major emission from the examined facility, with filter-based impactor samples showing average near-source increases (~15–50 m) in ambient PM10 of 5.8 ± 2.9 μg m−3 above background levels. PM2.5 also showed contribution attributable to the facility (1.7 ± 1.1 μg m−3). Optical particle counter analysis of the numerical size distributions showed bimodal distributions for both the upwind and downwind conditions, with maximums around 2.5 μm and below the minimum quantified diameter of 0.3 μm. The distributions showed increased numbers of coarse particles (PM10) during periods when wind transport came from the barns, but the differences were not statistically significant at the 95% confidence level. The PM10 aerosols showed statistically increased concentrations of sulfate, nitrate, ammonium, calcium, organic carbon, and elemental carbon when the samplers were downwind from the pig barns. Organic carbon was the major constituent of the barn-impacted particulate matter in both sub-micron (54%) and coarse size (20%) ranges. The AMS PM1 chemical speciation showed similar species increases, with the exception of and Ca+2, the latter not quantified by the AMS.  相似文献   
32.
Gravity derived only from airborne gravity gradient measurements with a normal error distribution will have an error that increases with wavelength. It is straightforward in principle to use sparsely sampled regional gravimeter data to provide the long wavelength information, thereby conforming the derived gravity to the regional gravity. Regional surface or airborne gravimeter data are not always available and can be difficult and expensive to collect in many of the areas where an airborne gravity gradiometer survey is flown. However the recent release by the Danish National Space Centre of the DNSC08 global gravity anomaly data has provided regional gravity data for the entire earth of adequate quality for this purpose. Studies over three areas, including comparisons with ground, marine and airborne gravimetry, demonstrate the validity of this approach. Future improvements in global gravity anomaly data are expected, particularly as the product from the recently launched Gravity field and steady‐state Ocean Circulation Explorer (GOCE) satellite becomes available and these will lead directly to an improvement in the very wide bandwidth gravity available after conforming gravity derived from gravity gradiometry with the global gravity.  相似文献   
33.
Quantitative assessment of the risk of submarine landslides is an essential part of the design process for offshore oil and gas developments in deep water, beyond the continental shelf. Landslides may be triggered by a reduction in shear strength of subsea sediments over a given zone, caused for example by seismic activity. Simple criteria are then needed to identify critical conditions whereby the zone of weakness could grow catastrophically to cause a landslide. A number of such criteria have been developed over the last decade, based either on ideas drawn from fracture mechanics, or considering the equilibrium of the initial weakened zone and adjacent process zones of gradually softening material. Accounting for the history of the weak zone initiation is critical for derivation of reliable propagation criteria, in particular considering dynamic effects arising from accumulating kinetic energy of the failing material, which will allow the failure to propagate from a smaller initial zone of weakened sediments. Criteria are developed here for planar conditions, taking full account of such dynamic effects, which are shown to be capable of reducing the critical length of the softened zone by 20% or more compared with criteria based on static conditions. A numerical approach is used to solve the governing dynamic equations for the sliding material, the results from which justify assumptions that allow analytical criteria to be developed for the case where the initial softening occurs instantaneously. The effect of more gradual softening is also explored. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
34.
The breakdown of flux-freezing in molecular clouds and protostellar discs is usually approximated by ambipolar diffusion at low densities or by resistive diffusion at high densities. Here an intermediate regime is discussed in which the Hall term in the conductivity tensor is significant, and the vector evolution of the magnetic field, and therefore the evolution of the system under consideration is dramatically altered. Calculations of charged particle abundances in dense gas in molecular clouds and protostellar discs demonstrate that Hall diffusion is important over a surprisingly broad range of conditions.  相似文献   
35.

On 22 March 2014, a massive, catastrophic landslide occurred near Oso, Washington, USA, sweeping more than 1 km across the adjacent valley flats and killing 43 people. For the following 5 weeks, hundreds of workers engaged in an exhaustive search, rescue, and recovery effort directly in the landslide runout path. These workers could not avoid the risks posed by additional large-scale slope collapses. In an effort to ensure worker safety, multiple agencies cooperated to swiftly deploy a monitoring and alerting system consisting of sensors, automated data processing and web-based display, along with defined communication protocols and clear calls to action for emergency management and search personnel. Guided by the principle that an accelerating landslide poses a greater threat than a steadily moving or stationary mass, the system was designed to detect ground motion and vibration using complementary monitoring techniques. Near real-time information was provided by continuous GPS, seismometers/geophones, and extensometers. This information was augmented by repeat-assessment techniques such as terrestrial and aerial laser scanning and time-lapse photography. Fortunately, no major additional landsliding occurred. However, we did detect small headscarp failures as well as slow movement of the remaining landslide mass with the monitoring system. This was an exceptional response situation and the lessons learned are applicable to other landslide disaster crises. They underscore the need for cogent landslide expertise and ready-to-deploy monitoring equipment, the value of using redundant monitoring techniques with distinct goals, the benefit of clearly defined communication protocols, and the importance of continued research into forecasting landslide behavior to allow timely warning.

  相似文献   
36.
We examine the application of Hidden Markov Models (HMMs) to volcanic occurrences. The parameters in HMMs can be estimated from data by means of the Expectation–Maximization (EM) algorithm. Various formulations permit modelling the activity level of a volcano through onset counts, the intensity of a Markov Modulated Poisson Process (MMPP), or through the intervals between onsets. More elaborate models allow investigation of the relationship between durations and reposes. After fitting the model, the Viterbi algorithm can be used to identify the underlying (hidden) activity level of the volcano most consistent with the observations. The HMM readily provides forecasts of the next event, and is easily simulated. Data of flank eruptions 1600–2006 from Mount Etna are used to illustrate the methodology. We find that the volcano has longish periods of Poissonian behaviour, interspersed with less random periods, and that changes in regime may be more frequent than have previously been identified statistically. The flank eruptions of Mount Etna appear to have a complex time-predictable character, which is compatible with transitions between an open and closed conduit system. The relationship between reposes and durations appears to characterize the cyclic nature of the volcanoes activity.  相似文献   
37.
38.
39.
California Governor’s Executive Order (CGEO) S-3-05 requires that California greenhouse gas (GHG) emissions be reduced to 80 % below 1990 levels by the year 2050. Meeting this target will require drastic changes in transportation technology, fuel, and behavior which will reduce criteria pollutant emissions as well as GHG emissions. The improvement to local air quality caused by the reduced criteria pollutant emissions must be calculated to fully evaluate the overall benefits and costs of CGEO S-3-05. In the present study, seven different transportation scenarios that move towards the goals of CGEO S-3-05 in the transportation sector were examined to determine how they would affect future airborne particulate matter (PM2.5) concentrations in California: (1) hydrogen fuel cells, (2) electric vehicles, (3) high efficiency vehicles, (4) public mass transit, (5) biofuels, (6) biofuels + hybrid electric vehicles, and (7) hydrogen fuel cells + electric vehicles. The air quality implications of each scenario were evaluated using a chemical transport model applied during a wintertime stagnation episode representing future climate in California. Scenarios (6) and (7) reduced population-weighted PM2.5 mass concentrations by ~9 % and PM2.5 elemental carbon (EC) concentrations by ~30 % relative to base-case predictions.  相似文献   
40.
Predicting the future response of ice sheets to climate warming and rising global sea level is important but difficult. This is especially so when fast-flowing glaciers or ice streams, buffered by ice shelves, are grounded on beds below sea level. What happens when these ice shelves are removed? And how do the ice stream and the surrounding ice sheet respond to the abruptly altered boundary conditions? To address these questions and others we present new geological, geomorphological, geophysical and geochronological data from the ice-stream-dominated NW sector of the last British–Irish Ice Sheet (BIIS). The study area covers around 45 000 km2 of NW Scotland and the surrounding continental shelf. Alongside seabed geomorphological mapping and Quaternary sediment analysis, we use a suite of over 100 new absolute ages (including cosmogenic-nuclide exposure ages, optically stimulated luminescence ages and radiocarbon dates) collected from onshore and offshore, to build a sector-wide ice-sheet reconstruction combining all available evidence with Bayesian chronosequence modelling. Using this information we present a detailed assessment of ice-sheet advance/retreat history, and the glaciological connections between different areas of the NW BIIS sector, at different times during the last glacial cycle. The results show a highly dynamic, partly marine, partly terrestrial, ice-sheet sector undergoing large size variations in response to sub-millennial-scale climatic (Dansgaard–Oeschger) cycles over the last 45 000 years. Superimposed on these trends we identify internally driven instabilities, operating at higher frequency, conditioned by local topographic factors, tidewater dynamics and glaciological feedbacks during deglaciation. Specifically, our new evidence indicates extensive marine-terminating ice-sheet glaciation of the NW BIIS sector during Greenland Stadials 12 to 9 – prior to the main ‘Late Weichselian’ ice-sheet glaciation. After a period of restricted glaciation, in Greenland Interstadials 8 to 6, we find good evidence for rapid renewed ice-sheet build-up in NW Scotland, with the Minch ice-stream terminus reaching the continental shelf edge in Greenland Stadial 5, perhaps only briefly. Deglaciation of the NW sector took place in numerous stages. Several grounding-zone wedges and moraines on the mid- and inner continental shelf attest to significant stabilizations of the ice-sheet grounding line, or ice margin, during overall retreat in Greenland Stadials 3 and 2, and to the development of ice shelves. NW Lewis was the first substantial present-day land area to deglaciate, in the first half of Greenland Stadial 3 at a time of globally reduced sea-level c. 26 kabp , followed by Cape Wrath at c. 24 kabp. The topographic confinement of the Minch straits probably promoted ice-shelf development in early Greenland Stadial 2, providing the ice stream with additional support and buffering it somewhat from external drivers. However, c. 20–19 kabp , as the grounding-line migrated into shoreward deepening water, coinciding with a marked change in marine geology and bed strength, the ice stream became unstable. We find that, once underway, grounding-line retreat proceeded in an uninterrupted fashion with the rapid loss of fronting ice shelves – first in the west, then the east troughs – before eventual glacier stabilization at fjord mouths in NW Scotland by ~17 kabp. Around the same time, ~19–17 kabp , ice-sheet lobes readvanced into the East Minch – possibly a glaciological response to the marine-instability-triggered loss of adjacent ice stream (and/or ice shelf) support in the Minch trough. An independent ice cap on Lewis also experienced margin oscillations during mid-Greenland Stadial 2, with an ice-accumulation centre in West Lewis existing into the latter part of Heinrich Stadial 1. Final ice-sheet deglaciation of NW mainland Scotland was punctuated by at least one other coherent readvance at c. 15.5 kabp , before significant ice-mass losses thereafter. At the glacial termination, c. 14.5 kabp , glaciers fed outwash sediment to now-abandoned coastal deltas in NW mainland Scotland around the time of global Meltwater Pulse 1A. Overall, this work on the BIIS NW sector reconstructs a highly dynamic ice-sheet oscillating in extent and volume for much of the last 45 000 years. Periods of expansive ice-sheet glaciation dominated by ice-streaming were interspersed with periods of much more restricted ice-cap or tidewater/fjordic glaciation. Finally, this work indicates that the role of ice streams in ice-sheet evolution is complex but mechanistically important throughout the lifetime of an ice sheet – with ice streams contributing to the regulation of ice-sheet health but also to the acceleration of ice-sheet demise via marine ice-sheet instabilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号