首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2931篇
  免费   137篇
  国内免费   32篇
测绘学   68篇
大气科学   227篇
地球物理   729篇
地质学   986篇
海洋学   262篇
天文学   442篇
综合类   14篇
自然地理   372篇
  2024年   5篇
  2023年   6篇
  2022年   8篇
  2021年   54篇
  2020年   47篇
  2019年   55篇
  2018年   64篇
  2017年   66篇
  2016年   89篇
  2015年   89篇
  2014年   91篇
  2013年   179篇
  2012年   139篇
  2011年   185篇
  2010年   141篇
  2009年   167篇
  2008年   154篇
  2007年   162篇
  2006年   142篇
  2005年   125篇
  2004年   124篇
  2003年   108篇
  2002年   99篇
  2001年   71篇
  2000年   65篇
  1999年   59篇
  1998年   53篇
  1997年   37篇
  1996年   43篇
  1995年   29篇
  1994年   34篇
  1993年   32篇
  1992年   28篇
  1991年   26篇
  1990年   24篇
  1989年   23篇
  1988年   25篇
  1987年   29篇
  1986年   24篇
  1985年   31篇
  1984年   30篇
  1983年   21篇
  1982年   26篇
  1981年   23篇
  1980年   18篇
  1979年   15篇
  1978年   7篇
  1977年   7篇
  1974年   4篇
  1971年   3篇
排序方式: 共有3100条查询结果,搜索用时 0 毫秒
981.
982.
We describe the immediate impact of the 14 November 2016 Kaikōura magnitude 7.8 (Mw) earthquake on shore platforms and cliffs around Kaikōura Peninsula. The earthquake caused an instantaneous uplift of ~1.01 m of the peninsula. We resurveyed seven profiles previously used for erosion monitoring and observed changes in the configuration of the shoreline. The coseismic uplift has fundamentally changed the process regime operating on the platforms and altered the future trajectory of shore platform and cliff development. Our observations highlight the interplay of waves, weathering, biology and tectonics. At this location tectonism strongly modulates the process regime, driving instantaneous changes in morphology and altering rates and patterns of erosion. Finally, the uplift of the Kaikōura coast has implications for changing resilience to climate change and sea level rise. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
983.
Representation of dust sources remains a key challenge in quantifying the dust cycle and its environmental and climatic impacts. Direct measurements of dust fluxes from different landform types are useful in understanding the nature of dust emission and characterizing the dynamics of soil erodibility. In this study we used the PI-SWERL® instrument over a seasonal cycle to quantify the potential for PM10 (particles with diameter ≤10 μm) emission from several typical landform types across the Tengger Desert and Mu Us Sandy Land, northern China. Our results indicate that sparse grasslands and coppice dunes showed relatively high emission potentials, with emitted fluxes ranging from 10−1 to 101 mg m−2 s−1. These values were up to five times those emitted from sand dunes, and one to two orders of magnitude greater than the emissions from dry lake beds, stone pavements and dense grasslands. Generally, PM10 emission fluxes were seen to peak in the spring months, with significant reductions in summer and autumn (by up to 95%), and in winter (by up to 98%). Variations in soil moisture were likely a primary controlling factor responsible for this seasonality in PM10 emission. Our data provide a relative quantification of differences in dust emission potential from several key landform types. Such data allow for the evaluation of current dust source schemes proposed by prior researchers. Moreover, our data will allow improvements in properly characterizing the erodibility of dust source regions and hence refine the parameterization of dust emission in climate models. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   
984.
Mesozoic, Cenozoic and especially Holocene ostracod faunas have been documented from Japan. Not surprisingly, considering the plate tectonic factors at play, very few ostracod faunas are known from its early Paleozoic successions. Our pilot studies have recovered new ostracod assemblages from early Paleozoic terranes of Japan. Acid preparation of carbonates has yielded low diversity, poorly preserved yet significant palaeocopid and podocopid ostracod faunas from Wenlock/Ludlow Series Silurian rocks at Gionyama in the Kurosegawa Terrane, Miyazaki Prefecture, Kyushu, and Hitoegane in the Hida‐Gaien Terrane, Gifu Prefecture, Honshu. The ostracod faunas include new eurychilinoid (Pauproles supparata gen. et sp. nov.), hollinoid (Hollinella orienta sp. nov.) and beyrichioid (Clintiella antifrigga sp. nov.) palaeocopid taxa. Conodonts recovered from the same sample as the ostracods from Gionyama confirm a mid‐Silurian age for the part of the Gionyama Formation in question. The ostracod faunas recovered from Gionyama and Hitoegane are the first confirmed, well‐documented record of the group from the Silurian of Japan and are therefore the earliest known ostracods from that country (a previous record of purported Ordovician ostracods from Japan is incorrect). The ostracod taxa display links with the paleocontinents of particularly Laurentia and Baltica and demonstrate a pan‐tropical signature; it appears that climate control was stronger than geographical control in shaping this pattern of ostracod distribution. The material recovered includes adult dimorphic (assumed sexual) pairs of three palaeocopid species, which represent Japan's oldest (423–433 million years) known ‘couples’.  相似文献   
985.
Badland landscapes exhibit high erosion rates and represent the main source of fine sediments in some catchments. Advances in high-resolution topographic methods allow analysis of topographic changes at high temporal and spatial scales. We apply the Mapping Geomorphic Processes in the Environment (MaGPiE) algorithm to infer the main geomorphic process signatures operating in two sub-humid badlands with contrasting morphometric attributes located in the Southern Pyrenees. By interrogating a 5-year dataset of seasonal and annual topographic changes, we examine the variability of geomorphic processes at multiple temporal scales. The magnitude of geomorphic processes is linked to landform attributes and meteorological variables. Morphometric differences between both adjacent badlands allow us to analyse the role of landform attributes in the main geomorphic process reshaping landscapes subjected to the same external forcing (i.e. rainfall and temperature). The dominant geomorphic process signatures observed in both badlands are different, despite their close proximity and the same rainfall and temperature regimes. Process signatures determining surface lowering in the gently sloping south-facing badland, characterized by lower connectivity and more vegetation cover, are driven by surface runoff-based processes, both diffuse (causing sheet washing) and concentrated (determining cutting and filling, rilling and gullying). The steeper, more connected north-facing slopes of the other badland are reshaped by means of gravitational processes, with mass wasting dominating topographic changes. In terms of processes determining surface raising, both mass wasting and cutting and filling are most frequently observed in both badlands. There is a clear near-balanced feedback between both surface-raising and -lowering processes that becomes unbalanced at larger temporal scales due to the thresholds overcome, as the volume associated with surface lowering becomes higher than that associated with raising-based processes. Rainfall variables control surface flow processes, while those variables associated with low temperature have a significant relation with mass movement-based processes and other localized processes such as regolith cohesion loss. Finally, our results point out that morphometry (slope and connectivity) together with vegetation cover are key factors determining geomorphic processes and associated topographic changes. © 2020 John Wiley & Sons, Ltd.  相似文献   
986.
Natural Hazards - The effective communication of flood risk offers the opportunity to ensure communities can adapt and respond appropriately to changing local conditions. At a time of diminishing...  相似文献   
987.
Results from historical (1855–2005) shoreline change analysis conducted along the Chandeleur Islands, Louisiana demonstrate that tropical cyclone frequency dominates the long-term evolution of this barrier island chain. Island area decreased at a rate of −0.16 km2/year for the relatively quiescent time period up until 1996, when an increase in tropical cyclone frequency accelerated this island area reduction to a rate of −1.01 km2/year. More frequent hurricanes also affected shoreline retreat rates, which increased from −11.4 m/year between 1922 and 1996 to −41.9 m/year between 1982 and 2005. The erosional impact caused by the passage of Hurricane Katrina in 2005 was unprecedented. Between 2004 and 2005, the shoreline of the northern islands retreated −201.5 m/year, compared with an average retreat rate of −38.4 m/year between 1922 and 2004. A linear regression analysis of shoreline change predicts that, as early as 2013, the backbarrier marsh that serves to stabilize the barrier island chain will be completely destroyed if storm frequency observed during the past decade persists. If storm frequency decreases to pre-1996 recurrence intervals, the backbarrier marsh is predicted to remain until 2037. Southern portions of the barrier island chain where backbarrier marsh is now absent behave as ephemeral islands that are destroyed after storm impacts and reemerge during extended periods of calm weather, a coastal behavior that will eventually characterize the entire island chain.  相似文献   
988.
Several shore-parallel marine sand bodies lie on the Louisiana continental shelf. They are Trinity Shoal, Ship Shoal, Outer Shoal, and the St. Bernard Shoals. These shoals mark the submerged positions of ancient shorelines associated with abandoned deltas. Three of these shoals are single elongate deposits. The fourth shoal, the St. Bernard Shoals, consists of a group of discrete sand bodies ranging in size from 44 to 0.05 km2, 25 km southeast of the Chandeleur Islands in 15–18 m of water. The St. Bernard Shoals are stratigraphically above the St. Bernard delta complex, which was active 2,500–1,800 years b.p. Understanding the evolution of the St. Bernard Shoals is necessary to reconstruct the Holocene chronology of the St. Bernard delta complex and the eastern Louisiana continental shelf. For this study, 47 vibracores and 400 km of shallow seismic reflection data collected in 1987 across the Louisiana shelf were analyzed. In June 2008, 384 km of higher-resolution seismic reflection data were acquired across the study area and appended to the preexisting datasets. Vibracores were integrated with seismic profiles to identify facies and their regional distribution. Our results demonstrate that the deltaic package stratigraphically below the St. Bernard Shoals is chronologically younger than the northern distributaries, but derived from the same trunk distributary channel (Bayou la Loutre). The river eventually bypassed the northern distributaries, and began to deposit sediment further onto the continental shelf. After abandonment, the overextended delta lobe was rapidly transgressed, creating a transgressive shoreline that eventually coalesced with earlier shorelines in the region to form the Chandeleur Islands. The St. Bernard Shoals formed by the reworking of the relict distributary deposits exposed on the inner to mid shelf during and subsequent to shoreface ravinement.  相似文献   
989.
The Pentland Firth, located between the north coast of mainland Scotland (UK) and the Orkney Islands, is recognised as an excellent location for the utilisation of tidal stream technology. Potential ecological impacts associated with tidal stream technology may ultimately depend on device design, array size and deployment location. Available ecological data for the Pentland Firth is summarised and strategic priorities for assessing ecological impacts are provided. Baseline data on marine species and habitats in the Pentland Firth is severely lacking and consequently the integrity of any environmental impact assessment could be compromised by this lack of data.  相似文献   
990.
Disturbance and productivity are often cited as the main factors determining temporal and spatial patterns in species distribution and the diversity of communities. A field experiment was conducted to test the role of these factors in the structuring of early successional fouling communities in a nutrient limited system at the south coast of Madeira Island. Macro‐benthic sessile communities, established on artificial settlement substrata, were manipulated and surveyed over a 9‐week period. We applied mechanical disturbances of four different frequencies crossed with three levels of inorganic nutrient enrichment. Fertilization enhanced community diversity by favouring the establishment and growth of macroalgae. Disturbance reduced diversity by eliminating species – but only at the highest nutrient level. This is explained by a multiple‐stressor model; species most sensitive to nutrient deficiency (only present in the highest enrichment treatment) were simultaneously the most sensitive to disturbance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号