首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   896篇
  免费   43篇
  国内免费   5篇
测绘学   16篇
大气科学   37篇
地球物理   273篇
地质学   308篇
海洋学   66篇
天文学   196篇
综合类   4篇
自然地理   44篇
  2023年   4篇
  2022年   4篇
  2021年   10篇
  2020年   16篇
  2019年   16篇
  2018年   33篇
  2017年   31篇
  2016年   62篇
  2015年   37篇
  2014年   38篇
  2013年   45篇
  2012年   33篇
  2011年   57篇
  2010年   41篇
  2009年   49篇
  2008年   47篇
  2007年   35篇
  2006年   39篇
  2005年   32篇
  2004年   25篇
  2003年   23篇
  2002年   25篇
  2001年   16篇
  2000年   9篇
  1999年   12篇
  1998年   12篇
  1997年   8篇
  1996年   16篇
  1995年   10篇
  1994年   8篇
  1993年   8篇
  1992年   4篇
  1990年   8篇
  1989年   6篇
  1987年   8篇
  1986年   5篇
  1984年   6篇
  1983年   4篇
  1981年   5篇
  1980年   6篇
  1979年   6篇
  1978年   4篇
  1976年   5篇
  1952年   5篇
  1951年   4篇
  1950年   3篇
  1948年   8篇
  1941年   3篇
  1940年   3篇
  1939年   6篇
排序方式: 共有944条查询结果,搜索用时 109 毫秒
101.
The volume variation as a function of pressure along the jadeite–aegirine solid solution was determined at room temperature up to pressures between 6.5 and 9.7 GPa by single-crystal X-ray diffraction. The unit-cell volumes collected at room pressure for the different compositions indicate a slight deviation from linearity along the join. The pressure–volume data have been fitted using a third-order Birch-Murnaghan equation of state (BM3-EoS). The bulk modulus, K T0, varies from 134.0(7) GPa for pure jadeite to 116.1(5) GPa for pure aegirine. Its evolution with composition along the join is not linear and can be described by the following second order polynomial:
(1)
The value of the first pressure derivative K′ is close to 4 for all the samples investigated and can be used in a BM3-EoS to determine the volume variations of these pyroxenes up to 7–10 GPa. Along the join the highest compressibility among the crystallographic directions is always observed along a, however, the compression along b is the most affected by compositional changes. The strain ellipsoid analysis indicates that the major compression occurs on the (0 1 0) plane along a direction at about 145° to the c axis (from c to a). The anisotropy of the compression increases with increasing the aegirine component, as confirmed by the analysis of both the axial compressibility and the strain tensor.  相似文献   
102.
The Pipanaco Basin, in the southern margin of the Andean Puna plateau at ca. 28°SL, is one of the largest and highest intermontane basins within the northernmost Argentine broken foreland. With a surface elevation >1000 m above sea level, this basin represents a strategic location to understand the subsidence and subsequent uplift history of high‐elevation depositional surfaces within the distal Andean foreland. However, the stratigraphic record of the Pipanaco Basin is almost entirely within the subsurface, and no geophysical surveys have been conducted in the region. A high‐resolution gravity study has been designed to understand the subsurface basin geometry. This study, together with stratigraphic correlations and flexural and backstripping analysis, suggests that the region was dominated by a regional subsidence episode of ca. 2 km during the Miocene‐Pliocene, followed by basement thrusting and ca. 1–1.5 km of sediment filling within restricted intermontane basin between the Pliocene‐Pleistocene. Based on the present‐day position of the basement top as well as the Neogene‐Present sediment thicknesses across the Sierras Pampeanas, which show slight variations along strike, sediment aggradation is not the most suitable process to account for the increase in the topographic level of the high‐elevation, close‐drainage basins of Argentina. The close correlation between the depth to basement and the mean surface elevations recorded in different swaths indicates that deep‐seated geodynamic process affected the northern Sierras Pampeanas. Seismic tomography, as well as a preliminary comparison between the isostatic and seismic Moho, suggests a buoyant lithosphere beneath the northern Sierras Pampeanas, which might have driven the long‐wavelength rise of this part of the broken foreland after the major phase of deposition in these Andean basins.  相似文献   
103.
Agriculture is highly exposed to climate change, as farming activities directly depend on climatic conditions. Knowledge of the extent of such change and of related phenomena will help to answer the questions posed by society about adaptation strategies. The global situation is well described by the Fourth IPCC assessment report (IPCC 2007), but local studies are important to understand the impact and the priorities to adopt in adaptation strategies. In this study a historical set of meteorological data, collected during the period 1952–2007 at the University of Bologna (Italy) agrometeorological station, was analysed. Several indexes, such as Frost Severity Index, number of hot days, number of rainy days, etc., were calculated, and their trends in time were analysed. The results show a scenario of increasing temperatures and evapotranspiration, a decrease in rainy days and a deepening of the watertable. The effect of these changes on agriculture will be a decrease in water availability, an increase in heat stress in plants and an increase in drought risk.  相似文献   
104.
Modelling the transfer of heat, water vapour, and CO2 between the biosphere and the atmosphere is made difficult by the complex two-way interaction between leaves and their immediate microclimate. When simulating scalar sources and sinks inside canopies on seasonal, inter-annual, or forest development time scales, the so-called well-mixed assumption (WMA) of mean concentration (i.e. vertically constant inside the canopy but dynamically evolving in time) is often employed. The WMA eliminates the need to model how vegetation alters its immediate microclimate, which necessitates formulations that utilize turbulent transport theories. Here, two inter-related questions pertinent to the WMA for modelling scalar sources, sinks, and fluxes at seasonal to inter-annual time scales are explored: (1) if the WMA is to be replaced so as to resolve this two-way interaction, how detailed must the turbulent transport model be? And (2) what are the added predictive skills gained by resolving the two-way interaction vis-à-vis other uncertainties such as seasonal variations in physiological parameters. These two questions are addressed by simulating multi-year mean scalar concentration and eddy-covariance scalar flux measurements collected in a Loblolly pine (P. taeda L.) plantation near Durham, North Carolina, U.S.A. using turbulent transport models ranging from K-theory (or first-order closure) to third-order closure schemes. The multi-layer model calculations with these closure schemes were contrasted with model calculations employing the WMA. These comparisons suggested that (i) among the three scalars, sensible heat flux predictions are most biased with respect to eddy-covariance measurements when using the WMA, (ii) first-order closure schemes are sufficient to reproduce the seasonal to inter-annual variations in scalar fluxes provided the canonical length scale of turbulence is properly specified, (iii) second-order closure models best agree with measured mean scalar concentration (and temperature) profiles inside the canopy as well as scalar fluxes above the canopy, (iv) there are no clear gains in predictive skills when using third-order closure schemes over their second-order closure counterparts. At inter-annual time scales, biases in modelled scalar fluxes incurred by using the WMA exceed those incurred when correcting for the seasonal amplitude in the maximum carboxylation capacity (V cmax, 25) provided its mean value is unbiased. The role of local thermal stratification inside the canopy and possible computational simplifications in decoupling scalar transfer from the generation of the flow statistics are also discussed.
“The tree, tilting its leaves to capture bullets of light; inhaling, exhaling; its many thousand stomata breathing, creating the air”. Ruth Stone, 2002, In the Next Galaxy
  相似文献   
105.
We present an analysis of a regional simulation of present-day climate (1981–1990) over southern South America. The regional model MM5 was nested within time-slice global atmospheric model experiments conducted by the HadAM3H model. We evaluate the capability of the model in simulating the observed climate with emphasis on low-level circulation patterns and surface variables, such as precipitation and surface air mean, maximum and minimum temperatures. The regional model performance was evaluated in terms of seasonal means, seasonal cycles, interannual variability and extreme events. Overall, the regional model is able to capture the main features of the observed mean surface climate over South America, its seasonal evolution and the regional detail due to topographic forcing. The observed regional patterns of surface air temperatures (mean, maxima and minima) are well reproduced. Biases are mostly within 3°C, temperature being overestimated over central Argentina and underestimated in mountainous regions during all seasons. Biases in northeastern Argentina and southeastern Brazil are positive during austral spring season and negative in other seasons. In general, maximum temperatures are better represented than minimum temperatures. Warm bias is larger during austral summer for maximum temperature and during austral winter for minimum temperature, mainly over central Argentina. The broad spatial pattern of precipitation and its seasonal evolution are well captured; however, the regional model overestimates the precipitation over the Andes region in all seasons and in southern Brazil during summer. Precipitation amounts are underestimated over the La Plata basin from fall to spring. Extremes of precipitation are better reproduced by the regional model compared with the driving model. Interannual variability is well reproduced too, but strongly regulated by boundary conditions, particularly during summer months. Overall, taking into account the quality of the simulation, we can conclude that the regional model is capable in reproducing the main regional patterns and seasonal cycle of surface variables. The present reference simulation constitutes the basis to examine the climate change simulations resulting from the A2 and B2 forcing scenarios which are being reported in a separate study.  相似文献   
106.
A. Rossi  F. Marzari 《Icarus》2009,202(1):95-103
The overall change of NEO spin rate due to planetary encounters and YORP is evaluated by using a Monte Carlo model. A large sample of test objects mimicking a source population is evolved over a timescale comparable with the Solar System age until they reach a steady state spin distribution that should reproduce the current NEO distribution. The spin change due to YORP is computed for each body according to a simplified model based on Scheeres [Scheeres, D.J., 2007a. Icarus 188, 430-450].The steady state cumulative distribution of NEO spin rates obtained from our simulation nicely reproduces the observed one, once our results are biased to match the diameter distribution of the sample of objects included in the observational database. The excellent agreement strongly suggests that YORP is responsible for the concentration of spin at low rotation rates. In fact, in the absence of YORP the steady state population significantly deviates from the observed one. The spin evolution due to YORP is also so rapid for NEOs that the initial rotation rate distribution of any source population is quickly relaxed to that of the observed population. This has profound consequences for the study of NEO origin since we cannot trace the sources of NEOs from their rotation rate only.  相似文献   
107.
When double neutron star or neutron star–black hole binaries merge, the final remnant may comprise a central solar-mass black hole surrounded by a  ∼0.01–0.1 M  torus. The subsequent evolution of this disc may be responsible for short γ-ray bursts (SGRBs). A comparable amount of mass is ejected into eccentric orbits and will eventually fallback to the merger site after ∼0.01 s. In this paper, we investigate analytically the fate of the fallback matter, which may provide a luminous signal long after the disc is exhausted. We find that matter in the eccentric tail returns at a super-Eddington rate and eventually (≳0.1 s) is unable to cool via neutrino emission and accrete all the way to the black hole. Therefore, contrary to previous claims, our analysis suggests that fallback matter is not an efficient source of late-time accretion power and unlikely to cause the late-flaring activity observed in SGRB afterglows. The fallback matter rather forms a radiation-driven wind or a bound atmosphere. In both the cases, the emitting plasma is very opaque and photons are released with a degraded energy in the X-ray band. We therefore suggest that compact binary mergers could be followed by an 'X-ray renaissance', as late as several days to weeks after the merger. This might be observed by the next generation of X-ray detectors.  相似文献   
108.
We present measurements of the clustering of hot and cold patches in the microwave background sky as measured from the Wilkinson Microwave Anisotropy Probe 5-year data. These measurements are compared with theoretical predictions which assume that the cosmological signal obeys Gaussian statistics. We find significant differences from the simplest Gaussian-based prediction. However, the measurements are sensitive to the fact that the noise is spatially inhomogeneous (e.g. because different parts of the sky were observed for different lengths of time). We show how to account for this spatial inhomogeneity when making predictions. Differences from the Gaussian-based expectation remain even after this more careful accounting of the noise. In particular, we note that hot and cold pixels cluster differently within the same temperature thresholds at few-degree scales. While these findings may indicate primordial non-Gaussianity, we discuss other plausible explanations for these discrepancies. In addition, we find some deviations from Gaussianity at sub-degree scales, especially in the W band, whose origin may be associated with extragalactic dust emission.  相似文献   
109.
We present moderate resolution CCD spectra and R photometry for seven KP2001 stars. We revised the spectral classification of the stars in the range λλ4000−8700? . Our photometric data confirmed the behavior of the light curves downloaded from the NSVS (Northern Sky Variability Survey) database. For KP2001-32, presented as a Mira-type variable in NSVS, we estimated absolute bolometric M b and K-band M K magnitudes as well as the distance using the period-luminosity relations. We also estimated the mass loss rate using the calibration relations between mass loss rate and K - [12] index. From the position in infrared color-color diagrams, we confirmed the photometric classification of KP2001-221 as a semiregular variable, based on the light curve of the NSVS database. For the N-type carbon star KP2001-77 we estimated distance and absolute magnitude M K using different calibration methods. For the remaining four objects we derived the absolute magnitudes and distances using our CCD spectra and published JHK S magnitudes. We discuss the nature of these objects on the basis of the obtained results.  相似文献   
110.
Abstract— Intense magnetic anomalies over Martian surface suggest preservation of large volumes of very old crust (>3 Gyr) that formed in the presence of a global magnetic field. The global distribution of the magnetic intensities observed above the Martian crust suggests a division into three zones. Zone 1 is where the magnetic signature is negligible or of relatively low intensity at Mars Global Surveyor (MGS) satellite mapping altitude (400 km). Zone 2 is the region of intermediate crustal magnetic amplitudes and zone 3 is where the highest magnetic intensities are measured. Crater demagnetization near zone 3 reveals the presence of rocks with both high magnetic intensity and coercivity. Magnetic analyses of terrestrial rocks show that compositional banding in orogenic zones significantly enhances both magnetic coercivity and thermal remanent magnetization (TRM) efficiency. Such enhancement offers a novel explanation for the anomalously large intensities inferred of magnetic sources on Mars. We propose that both large magnetic coercivity and intensity near the South Pole is indicative of the presence of a large degree of deformation. Associated compositional zoning creates conditions for large scale magnetic anisotropy allowing magnetic minerals to acquire magnetization more efficiently, thereby causing the distinct magnetic signatures in zone 3, expressed by intense magnetic anomalies. We use a simple model to verify the magnetic enhancement. We hypothesize that magnetically enhanced zone would reside over the down welling plume at the time of magnetization acquisition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号