全文获取类型
收费全文 | 242篇 |
免费 | 17篇 |
国内免费 | 3篇 |
专业分类
测绘学 | 5篇 |
大气科学 | 6篇 |
地球物理 | 70篇 |
地质学 | 81篇 |
海洋学 | 41篇 |
天文学 | 47篇 |
综合类 | 2篇 |
自然地理 | 10篇 |
出版年
2024年 | 1篇 |
2023年 | 3篇 |
2022年 | 1篇 |
2021年 | 7篇 |
2020年 | 7篇 |
2019年 | 8篇 |
2018年 | 10篇 |
2017年 | 16篇 |
2016年 | 10篇 |
2015年 | 12篇 |
2014年 | 13篇 |
2013年 | 19篇 |
2012年 | 15篇 |
2011年 | 17篇 |
2010年 | 10篇 |
2009年 | 17篇 |
2008年 | 20篇 |
2007年 | 17篇 |
2006年 | 9篇 |
2005年 | 5篇 |
2004年 | 7篇 |
2003年 | 3篇 |
2002年 | 5篇 |
2001年 | 3篇 |
2000年 | 3篇 |
1999年 | 3篇 |
1998年 | 2篇 |
1997年 | 3篇 |
1996年 | 4篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1983年 | 1篇 |
1980年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1973年 | 2篇 |
1971年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有262条查询结果,搜索用时 6 毫秒
51.
Marina Manca Claudio Ramoni Patrizia Comoli 《Aquatic Sciences - Research Across Boundaries》2000,62(2):142-153
We reconstruct the impact of different environmental cues on Daphnia seasonal dynamics by means of an analysis of demographic and reproductive parameters, as well as of the size structure of the population. Data from 1996, indicative of the most recent productivity of the lake, with those from 1973, when the lake was meso-eutrophic, allow a discussion of the relevance of the observed changes for the structure of the pelagic food web of Lago Maggiore. Daphnia summer dynamics is mainly controlled by Bythotrephes longimanus. This is quite a different situation from that of the past, when Leptodora kindtii was the prevalent predatory cladocera. The size structure of Daphnia population revealed a depletion of small ovigerous females with increases in the predator. Our data allow a discussion of the idea, recently proposed, of Bythotrephes longimanus as a visual sit- and -wait predator. 相似文献
52.
Sousani Marina Eshiet Kenneth Imo-Imo Ingham Derek Pourkashanian Mohamed Sheng Yong 《Environmental Earth Sciences》2014,72(9):3383-3399
A three-dimensional model is presented and used to reproduce the laboratory hydraulic fracturing test performed on a thick-walled hollow cylinder limestone sample. This work aims to investigate the implications of the fluid flow on the behaviour of the micro-structure of the rock sample, including the material strength, its elastic constants and the initialisation and propagation of fractures. The replication of the laboratory test conditions has been performed based on the coupled Discrete Element Method (DEM) and Computational Fluid Dynamics scheme. The numerical results are in good agreement with the experimental data, both qualitatively and quantitatively. The developed model closely validates the overall behaviour of the laboratory sample, providing a realistic overview of the cracking propagation towards total collapse as well as complying with Lame’s theory for thick-walled cylinders. This research aims to provide some insight into designing an accurate DEM model of a fracturing rock that can be used to predict its geo-mechanical behaviour during Enhanced Oil Recovery applications. 相似文献
53.
The standard thermodynamic properties at 25°C, 1 bar (ΔG
fo, ΔH
fo, S
o, C
Po, V
o, ω) and the coefficients of the revised Helgeson–Kirkham–Flowers equations of state were evaluated for several aqueous complexes
formed by dissolved metals and either arsenate or arsenite ions. The guidelines of Shock and Helgeson (Geochim Cosmochim Acta
52:2009–2036, 1988) and Sverjensky et al. (Geochim Cosmochim Acta 61:1359–1412, 1997) were followed and corroborated with alternative approaches, whenever possible. The SUPCRT92 computer code was used to generate
the log K of the destruction reactions of these metal–arsenate and metal–arsenite aqueous complexes at pressures and temperatures required
by the EQ3/6 software package, version 7.2b. Apart from the AlAsO4o and FeAsO4o complexes, our log K at 25°C, 1 bar are in fair agreement with those of Whiting (MS Thesis, Colorado School of Mines, Golden, CO, 1992). Moreover, the equilibrium constants evaluated in this study are in good to fair agreement with those determined experimentally
for the Ca–dihydroarsenate and Ca–hydroarsenate complexes at 40°C (Mironov et al., Russ J Inorg Chem 40:1690, 1995) and for Fe(III)–hydroarsenate complex at 25°C (Raposo et al., J Sol Chem 35:79–94, 2006), whereas the disagreement with the log K measured for the Ca–arsenate complex at 40°C (Mironov et al., Russ J Inorg Chem 40:1690, 1995) might be due to uncertainties in this measured value. The implications of aqueous complexing between dissolved metals and
arsenate/arsenite ions were investigated for seawater, high-temperature geothermal liquids and acid mine drainage and aqueous
solutions deriving from mixing of acid mine waters and surface waters.
Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users. 相似文献
54.
We compare eruptive dynamics, effects and deposits of the Bezymianny 1956 (BZ), Mount St Helens 1980 (MSH), and Soufrière
Hills volcano, Montserrat 1997 (SHV) eruptions, the key events of which included powerful directed blasts. Each blast subsequently
generated a high-energy stratified pyroclastic density current (PDC) with a high speed at onset. The blasts were triggered
by rapid unloading of an extruding or intruding shallow magma body (lava dome and/or cryptodome) of andesitic or dacitic composition.
The unloading was caused by sector failures of the volcanic edifices, with respective volumes for BZ, MSH, and SHV c. 0.5,
2.5, and 0.05 km3. The blasts devastated approximately elliptical areas, axial directions of which coincided with the directions of sector
failures. We separate the transient directed blast phenomenon into three main parts, the burst phase, the collapse phase,
and the PDC phase. In the burst phase the pressurized mixture is driven by initial kinetic energy and expands rapidly into
the atmosphere, with much of the expansion having an initially lateral component. The erupted material fails to mix with sufficient
air to form a buoyant column, but in the collapse phase, falls beyond the source as an inclined fountain, and thereafter generates
a PDC moving parallel to the ground surface. It is possible for the burst phase to comprise an overpressured jet, which requires
injection of momentum from an orifice; however some exploding sources may have different geometry and a jet is not necessarily
formed. A major unresolved question is whether the preponderance of strong damage observed in the volcanic blasts should be
attributed to shock waves within an overpressured jet, or alternatively to dynamic pressures and shocks within the energetic
collapse and PDC phases. Internal shock structures related to unsteady flow and compressibility effects can occur in each
phase. We withhold judgment about published shock models as a primary explanation for the damage sustained at MSH until modern
3D numerical modeling is accomplished, but argue that much of the damage observed in directed blasts can be reasonably interpreted
to have been caused by high dynamic pressures and clast impact loading by an inclined collapsing fountain and stratified PDC.
This view is reinforced by recent modeling cited for SHV. In distal and peripheral regions, solids concentration, maximum
particle size, current speed, and dynamic pressure are diminished, resulting in lesser damage and enhanced influence by local
topography on the PDC. Despite the different scales of the blasts (devastated areas were respectively 500, 600, and >10 km2 for BZ, MSH, and SHV), and some complexity involving retrogressive slide blocks and clusters of explosions, their pyroclastic
deposits demonstrate strong similarity. Juvenile material composes >50% of the deposits, implying for the blasts a dominantly
magmatic mechanism although hydrothermal explosions also occurred. The character of the magma fragmented by explosions (highly
viscous, phenocryst-rich, variable microlite content) determined the bimodal distributions of juvenile clast density and vesicularity.
Thickness of the deposits fluctuates in proximal areas but in general decreases with distance from the crater, and laterally
from the axial region. The proximal stratigraphy of the blast deposits comprises four layers named A, B, C, D from bottom
to top. Layer A is represented by very poorly sorted debris with admixtures of vegetation and soil, with a strongly erosive
ground contact; its appearance varies at different sites due to different ground conditions at the time of the blasts. The
layer reflects intense turbulent boundary shear between the basal part of the energetic head of the PDC and the substrate.
Layer B exhibits relatively well-sorted fines-depleted debris with some charred plant fragments; its deposition occurred by
rapid suspension sedimentation in rapidly waning, high-concentration conditions. Layer C is mainly a poorly sorted massive
layer enriched by fines with its uppermost part laminated, created by rapid sedimentation under moderate-concentration, weakly
tractive conditions, with the uppermost laminated part reflecting a dilute depositional regime with grain-by-grain traction
deposition. By analogy to laboratory experiments, mixing at the flow head of the PDC created a turbulent dilute wake above
the body of a gravity current, with layer B deposited by the flow body and layer C by the wake. The uppermost layer D of fines
and accretionary lapilli is an ash fallout deposit of the finest particles from the high-rising buoyant thermal plume derived
from the sediment-depleted pyroclastic density current. The strong similarity among these eruptions and their deposits suggests
that these cases represent similar source, transport and depositional phenomena. 相似文献
55.
56.
Alexander N. KROT Alexander A. ULYANOV Marina A. IVANOVA 《Meteoritics & planetary science》2008,43(9):1531-1550
Abstract— –The CH/CB‐like chondrite Isheyevo consists of metal‐rich (70–90 vol% Fe,Ni‐metal) and metal‐poor (7–20 vol% Fe,Ni‐metal) lithologies which differ in size and relative abundance of Fe,Ni‐metal and chondrules, as well as proportions of porphyritic versus non‐porphyritic chondrules. Here, we describe the mineralogy and petrography of Ca,Al‐rich inclusions (CAIs) and amoeboid olivine aggregates (AOAs) in these lithologies. Based on mineralogy, refractory inclusions can be divided into hibonite‐rich (39%), grossite‐rich (16%), melilite‐rich (19%), spinel‐rich (14%), pyroxene‐anorthite‐rich (8%), fine‐grained spinel‐rich CAIs (1%), and AOAs (4%). There are no systematic differences in the inclusion types or their relative abundances between the lithologies. About 55% of the Isheyevo CAIs are very refractory (hibonite‐rich and grossite‐rich) objects, 20–240 μm in size, which appear to have crystallized from rapidly cooling melts. These inclusions are texturally and mineralogically similar to the majority of CAIs in CH and CB chondrites. They are distinctly different from CAIs in other carbonaceous chondrite groups dominated by the spinel‐pyroxene ± melilite CAIs and AOAs. The remaining 45% of inclusions are less refractory objects (melilite‐, spinel‐ and pyroxene‐rich CAIs and AOAs), 40–300 μm in size, which are texturally and mineralogically similar to those in other chondrite groups. Both types of CAIs are found as relict objects inside porphyritic chondrules indicating recycling during chondrule formation. We infer that there are at least two populations of CAIs in Isheyevo which appear to have experienced different thermal histories. All of the Isheyevo CAIs apparently formed at an early stage, prior to chondrule formation and prior to a hypothesized planetary impact that produced magnesian cryptocrystalline and skeletal chondrules and metal grains in CB, and possibly CH chondrites. However, some of the CAIs appear to have undergone melting during chondrule formation and possibly during a major impact event. We suggest that Isheyevo, as well as CH and CB chondrites, consist of variable proportions of materials produced by different processes in different settings: 1) by evaporation, condensation, and melting of dust in the protoplanetary disk (porphyritic chondrules and refractory inclusions), 2) by melting, evaporation and condensation in an impact generated plume (magnesian cryptocrystalline and skeletal chondrules and metal grains; some igneous CAIs could have been melted during this event), and 3) by aqueous alteration of pre‐existing planetesimals (heavily hydrated lithic clasts). The Isheyevo lithologies formed by size sorting of similar components during accretion in the Isheyevo parent body; they do not represent fragments of CH and CB chondrites. 相似文献
57.
A Double Solid Reactant Method was elaborated from a suggestion of Marini (Geological sequestration of carbon dioxide: Thermodynamics,
kinetics, and reaction path modeling. Developments in Geochemistry, Elsevier, Amsterdam, 2007) to simulate the release of
trace elements during the progressive dissolution of solid phases. The method is based on the definition, for each dissolving
solid, of both an entity whose thermodynamic and kinetic properties are known (either a pure mineral or a solid mixture) and
a special reactant, that is, a material of known stoichiometry and unknown thermodynamic and kinetic properties. The special
reactant is utilised to take into account the concentrations of trace elements in the dissolving solid phase. In this communication,
the influence of several trace elements on the ΔG
f
o, ΔG
r
o and log K of the minerals considered by Lelli et al. (Environ Geol, 2007) and Accornero and Marini (Geobasi, 2007a; Proceedings of
IMWA symposium, Cagliari, 27–31 May 2007b) was evaluated assuming ideal mixing in the solid state. These effects were found
to be negligible for albite and the leucite–latitic glass, limited for muscovites and chlorites, and slightly more important
for apatites. These influences become progressively higher with increasing concentration of trace elements in these minerals.
Based on these deviations in thermodynamic parameters, special reactants should not include oxide components with molar fractions
higher than 0.003.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
相似文献
Luigi MariniEmail: |
58.
Alexey Yurikov Maxim Lebedev Marina Pervukhina Boris Gurevich 《Geophysical Prospecting》2019,67(4):984-996
Shales play an important role in many engineering applications such as nuclear waste, CO2 storage and oil or gas production. Shales are often utilized as an impermeable seal or an unconventional reservoir. For both situations, shales are often studied using seismic waves. Elastic properties of shales strongly depend on their hydration, which can lead to substantial structural changes. Thus, in order to explore shaly formations with seismic methods, it is necessary to understand the dependency of shale elastic properties on variations in hydration. In this work, we investigate structural changes in Opalinus shale at different hydration states using laboratory measurements and X-ray micro-computed tomography. We show that the shale swells with hydration and shrinks with drying with no visible damage. The pore space of the shale deforms, exhibiting a reduction in the total porosity with drying and an increase in the total porosity with hydration. We study the elastic properties of the shale at different hydration states using ultrasonic velocities measurements. The elastic moduli of the shale show substantial changes with variations in hydration, which cannot be explained with a single driving mechanism. We suggest that changes of the elastic moduli with variations in hydration are driven by multiple competing factors: (1) variations in total porosity, (2) substitution of pore-filling fluid, (3) change in stiffness of contacts between clay particles and (4) chemical hardening/softening of clay particles. We qualitatively and quantitatively analyse and discuss the influence of each of these factors on the elastic moduli. We conclude that depending on the microstructure and composition of a particular shale, some of the factors dominate over the others, resulting in different dependencies of the elastic moduli on hydration. 相似文献
59.
Marina A. Ivanova Cyril A. Lorenz Ian A. Franchi Andrei Y. Bychkov Jeffrey E. Post 《Meteoritics & planetary science》2013,48(10):2059-2070
We have conducted hydration–dehydration experiments on terrestrial olivine to investigate the behavior of oxygen isotopic fractionation to test the hypothesis that multiple cycles of aqueous and thermal processing on a parent asteroid comprise a genetic relationship between CM2s and metamorphosed carbonaceous chondrites (MCCs). Two experiments were undertaken. In the first experiment, serpentine was obtained by hydrating terrestrial olivine (Fo90.9) in the laboratory. During this experiment, olivine was reacted with isotopically heavy water (δ18O 21.5‰) at T = 300 °C, = 300 bar, for 100 days. The oxygen isotopic composition of the experimental serpentine was enriched in 18O (by 10 ‰ in δ18O) due to exchange of oxygen isotopes between olivine and the 18O‐rich water. Dehydrated serpentine was then produced during laboratory heating experiment in vacuum, at T = 930 °C, for 1 h. The oxygen isotopic composition of the dehydrated serpentine was enriched in 18O by a further 7 ‰. The net result of the hydration–dehydration process was an enrichment of 18O in the final material by approximately 17‰. The new experimental results suggest that the oxygen isotopic compositions of MCCs of the Belgica‐like group, including Dhofar 225 and Dhofar 725, could be derived from those of typical CM2 chondrites via several cycles of hydration–dehydration caused by aqueous alteration and subsequent thermal metamorphism within their parent asteroids. 相似文献
60.
On Conditions of Phytoplankton Blooms in the Coastal Waters of the North-Western East/Japan Sea 总被引:1,自引:0,他引:1
Seasonal changes of abundance of the main phytoplankton groups of species (diatoms, dinoflagellates, chrysophytes, small flagellates
and cryptophytes) and a set of environmental parameters were investigated in coastal and preestuarine waters of Peter the
Great Bay (East/Japan Sea) in May-October of 1998 and 1999. Three periods of mass development were revealed: spring, summer
and autumn blooms, with successive change of species. The conditions favourable for each group of species were determined.
Driving mechanisms of the succession include nutrients transport through seasonal pycnocline by turbulent mixing, terrestrial
nutrients supply by monsoon floods, nutrients supply by upwellings, and light control by the thickness of upper mixed layer.
Summer succession could be explained by a simple SST-MLD diagram similar to Pingree S-kh diagram with sea surface temperature
as indicator of stratification (S) and mixed layer depth as indicator of light availability (kh). 相似文献