首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   414篇
  免费   18篇
  国内免费   1篇
测绘学   7篇
大气科学   31篇
地球物理   98篇
地质学   195篇
海洋学   41篇
天文学   39篇
自然地理   22篇
  2024年   1篇
  2022年   2篇
  2021年   8篇
  2020年   7篇
  2019年   6篇
  2018年   8篇
  2017年   14篇
  2016年   22篇
  2015年   24篇
  2014年   15篇
  2013年   27篇
  2012年   27篇
  2011年   30篇
  2010年   22篇
  2009年   34篇
  2008年   23篇
  2007年   31篇
  2006年   18篇
  2005年   25篇
  2004年   6篇
  2003年   10篇
  2002年   9篇
  2001年   8篇
  2000年   6篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1970年   2篇
排序方式: 共有433条查询结果,搜索用时 15 毫秒
361.
Natural Hazards - In October 2015, heavy rains brought by Typhoon Koppu generated landslides and debris flows in the municipalities of Bongabon, Laur, and Gabaldon in Nueva Ecija province....  相似文献   
362.
Interactions between lakes and groundwater are of increasing concern for freshwater environmental management but are often poorly characterized. Groundwater inflow to lakes, even at low rates, has proven to be a key in both lake nutrient balances and in determining lake vulnerability to pollution. Although difficult to measure using standard hydrometric methods, significant insight into groundwater–lake interactions has been acquired by studies applying geochemical tracers. However, the use of simple steady‐state, well‐mixed models, and the lack of characterization of lake spatiotemporal variability remain important sources of uncertainty, preventing the characterization of the entire lake hydrological cycle, particularly during ice‐covered periods. In this study, a small groundwater‐connected lake was monitored to determine the annual dynamics of the natural tracers, water stable isotopes and radon‐222, through the implementation of a comprehensive sampling strategy. A multilayer mass balance model was found outperform a well‐mixed, one‐layer model in terms of quantifying groundwater fluxes and their temporal evolution, as well as characterizing vertical differences. Water stable isotopes and radon‐222 were found to provide complementary information on the lake water budget. Radon‐222 has a short response time, and highlights rapid and transient increases in groundwater inflow, but requires a thorough characterization of groundwater radon‐222 activity. Water stable isotopes follow the hydrological cycle of the lake closely and highlight periods when the lake budget is dominated by evaporation versus groundwater inflow, but continuous monitoring of local meteorological parameters is required. Careful compilation of tracer evolution throughout the water column and over the entire year is also very informative. The developed models, which are suitable for detailed, site‐specific studies, allow the quantification of groundwater inflow and internal dynamics during both ice‐free and ice‐covered periods, providing an improved tool for understanding the annual water cycle of lakes.  相似文献   
363.
364.
Changes in wind speed and sediment transport are evaluated at a gap and adjacent crest of a 2 to 3 m high, 40 m wide foredune built by sand fences and vegetation plantings on a wide, nourished fine sand beach at Ocean City, New Jersey. Anemometer masts, cylindrical sand traps and erosion pins were placed on the beach and dune during two obliquely onshore wind events in February and March 2003. Results reveal that: (1) changes in the alongshore continuity of the beach and dune system can act as boundaries to aeolian transport when winds blow at an angle to the shoreline; (2) oblique winds blowing across poorly vegetated patches in the dune increase the potential for creating an irregular crest elevation; (3) transport rates and deflation rates can be greater within the foredune than on the beach, if the dune surface is poorly vegetated and the beach has not had time to dry following tidal inundation; (4) frozen ground does not prevent surface deflation; and (5) remnant sand fences and fresh storm wrack have great local but temporary effect on transport rates. Temporal and spatial differences due to sand fences and wrack, changes in sediment availability due to time‐dependent differences in surface moisture and frozen ground, combined with complex topography and patchy vegetation make it difficult to specify cause–effect relationships. Effects of individual roughness elements on the beach and dune on wind flow and sediment transport can be quantified at specific locations at the event scale, but extrapolation of each event to longer temporal and spatial scales remains qualitative. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
365.
The greater Agulhas Current is one of the most energetic current systems in the global ocean. It plays a fundamental role in determining the mean state and variability of the regional marine environment, affecting its resources and ecosystem, the regional weather and the global climate on a broad range of temporal and spatial scales. In the absence of a coherent in-situ and satellite-based observing system in the region, modelling and data assimilation techniques play a crucial role in both furthering the quantitative understanding and providing better forecasts of this complicated western boundary current system. In this study, we use a regional implementation of the Hybrid Coordinate Ocean Model and assimilate along-track satellite sea level anomaly (SLA) data using the Ensemble Optimal Interpolation (EnOI) data assimilation scheme. This study lays the foundation towards the development of a regional prediction system for the greater Agulhas Current system. Comparisons to independent in-situ drifter observations show that data assimilation reduces the error compared to a free model run over a 2-year period. Mesoscale features are placed in more consistent agreement with the drifter trajectories and surface velocity errors are reduced. While the model-based forecasts of surface velocities are not as accurate as persistence forecasts derived from satellite altimeter observations, the error calculated from the drifter measurements for eddy kinetic energy is significantly lower in the assimilation system compared to the persistence forecast. While the assimilation of along-track SLA data introduces a small bias in sea surface temperatures, the representation of water mass properties and deep current velocities in the Agulhas system is improved.  相似文献   
366.
The small scale distribution of the snowpack in mountain areas is highly heterogeneous, and is mainly controlled by the interactions between the atmosphere and local topography. However, the influence of different terrain features in controlling variations in the snow distribution depends on the characteristics of the study area. As this leads to uncertainties in high spatial resolution snowpack simulations, a deeper understanding of the role of terrain features on the small scale distribution of snow depth is required. This study applied random forest algorithms to investigate the temporal evolution of snow depth in complex alpine terrain using as predictors various topographical variables and in situ snow depth observations at a single location. The high spatial resolution (1 m x 1 m) snow depth distribution database used in training and evaluating the random forests was derived from terrestrial laser scanner (TLS) devices at three study sites, in the French Alps (2 sites) and the Spanish Pyrenees (1 site). The results show the major importance of two topographic variables, the topographic position index and the maximum upwind slope parameter. For these variables the search distances and directions depended on the characteristics of each site and the TLS acquisition date, but are consistent across sites and are tightly related to main wind directions. The weight of the different topographic variables on explaining snow distribution evolves while major snow accumulation events still take place and minor changes are observed after reaching the annual snow accumulation peak. Random forests have demonstrated good performance when predicting snow distribution for the sites included in the training set with R2 values ranging from 0.82 to 0.94 and mean absolute errors always below 0.4 m. Oppositely, this algorithm failed when used to predict snow distribution for sites not included in the training set, with mean absolute errors above 0.8 m.  相似文献   
367.
The management of tidal inlets requires the accurate prediction of equilibrium morphologies. In areas where the flow from rivers is highly regulated, it is important to give decision makers the ability to determine optimal flow management schemes, in order to allow tidal inlets to function as naturally as possible, and minimise the risk of inlet closure. The River Murray Mouth in South Australia is one such problem area. Drought and the retention of water for irrigation and urban water consumption have limited the amount of water entering the estuary. As a result, sediment from the coastal environment is being deposited in the mouth of the estuary, reducing the effect of further coastal interactions. Currently, situations such as this are modelled using traditional process-based methods, where wave, current, sediment transport and sediment balance modules are linked together in a time-stepping process. The modules are reapplied and assessed until a stable morphology is formed. In this paper, new options for modelling equilibrium morphologies of tidal inlets are detailed, which alleviate some of the shortfalls of traditional process-based models, such as the amplification of small errors and reliance on initial conditions. The modelling problem is approached in this paper from a different angle and involves the use of entropy based objective functions, which are optimised in order to find equilibrium morphologies. In this way, characteristics of a system at equilibrium can be recognised and a stable system predicted without having to step through time. This paper also details the use of self-organisation based modelling methods, another non-traditional model application, where local laws and feedback result in the formation of a global stable equilibrium morphology. These methods represent a different approach to traditional models, without some of the characteristics that may add to their limitations. Responsible Editor: Alejandro Souza  相似文献   
368.
In this work, we map the absorption properties of the French crust by analyzing the decay properties of coda waves. Estimation of the coda quality factor \(Q_{c}\) in five non-overlapping frequency-bands between 1 and 32 Hz is performed for more than 12,000 high-quality seismograms from about 1700 weak to moderate crustal earthquakes recorded between 1995 and 2013. Based on sensitivity analysis, \(Q_{c}\) is subsequently approximated as an integral of the intrinsic shear wave quality factor \(Q_{i}\) along the ray connecting the source to the station. After discretization of the medium on a 2-D Cartesian grid, this yields a linear inverse problem for the spatial distribution of \(Q_{i}\). The solution is approximated by redistributing \(Q_{c}\) in the pixels connecting the source to the station and averaging over all paths. This simple procedure allows to obtain frequency-dependent maps of apparent absorption that show lateral variations of \(50\%\) at length scales ranging from 50 km to 150 km, in all the frequency bands analyzed. At low frequency, the small-scale geological features of the crust are clearly delineated: the Meso-Cenozoic basins (Aquitaine, Brabant, Southeast) appear as strong absorption regions, while crystalline massifs (Armorican, Central Massif, Alps) appear as low absorption zones. At high frequency, the correlation between the surface geological features and the absorption map disappears, except for the deepest Meso-Cenozoic basins which exhibit a strong absorption signature. Based on the tomographic results, we explore the implications of lateral variations of absorption for the analysis of both instrumental and historical seismicity. The main conclusions are as follows: (1) current local magnitude \(M_{L}\) can be over(resp. under)-estimated when absorption is weaker(resp. stronger) than the nominal value assumed in the amplitude-distance relation; (2) both the forward prediction of the earthquake macroseismic intensity field and the estimation of historical earthquake seismological parameters using macroseismic intensity data are significantly improved by taking into account a realistic 2-D distribution of absorption. In the future, both \(M_{L}\) estimations and macroseismic intensity attenuation models should benefit from high-resolution models of frequency-dependent absorption such as the one produced in this study.  相似文献   
369.
Comparative assessment of stone weathering intensities and bioclimatic conditions was conducted at four temples located in cleared and forested sites of the Angkor Park, based on similar protocols. Four thousand sculpted lotus petals carved in the same grey sandstone were categorized by using two customized scales of weathering intensity, and climate monitoring was conducted from December 2008 to November 2009. Whereas 70% of the sandstone lotus petals are almost completely destroyed by mechanical weathering in cleared areas, 74% of petals located in forested environments appear to be totally free of mechanical weathering and are only affected by superficial biochemical weathering. Ambient conditions are also contrasting, with the magnitude of the diurnal surface temperature and relative humidity ranges being three times higher at cleared sites than in wooded areas. As wetting–drying cycles are the driving force of sandstone decay at Angkor, causal links are suggested between weathering and climate regimes. In wooded areas, the microclimate is buffered by the forest and the associated lithobionts, which maintain constant humidity levels, reduce thermal stresses at the stone surface and induce a slow biochemical weathering regime. In cleared areas, direct exposure to sunshine and monsoon rains induces pronounced wetting–drying cycles conducive to swelling–shrinking movements and other potential processes, provoking the rapid mechanical decay of the sandstone. Even if local damage can be caused by tree roots, the forest cover and the associated lithobionts obviously play an overall protective role. Additionally, microtopographical factors related to architectural designs and post‐building events probably explain intra‐site and between site minor differences in the amount of sandstone decay, by influencing key factors such as the water residence time at the stone surface. Last, the contrasting weathering regimes in forested and cleared sites are but a trend, for besides overwhelming mechanical weathering, chemical weathering is also operative at cleared sites, as indicated by salt efflorescences and ferric oxidation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
370.
LandScan USA is a 90 m population distribution model that is used for a variety of applications, including emergency management. Models should have a measure of accuracy; however, the accuracy of population distribution models is difficult to determine due to the inclusion of multiple input datasets and the lack of quantifiable, observable (validated) data to confirm model output. Validated data enables quantification of: (1) overall model accuracy and (2) changes in model output at different levels of quality control. This article examines the effect of quality control for two national school datasets incorporated as input in LandScan USA for Philadelphia County, Pennsylvania; which had a local, validated school dataset available. The effect of each stage of quality control efforts utilized throughout the LandScan USA process were assessed to determine what level of quality control was required to have a statistically significant change of the model's population distribution. The typical level of quality control for LandScan USA resulted in 36% of schools being moved to the correct location and 20% of missing student enrollments were found, compared to 87% and 98% respectively for the validated dataset. The costs of increasing quality control resulted in a six-fold increase in labor time; however, the additional quality control did not produce statistically significant improvements in the LandScan USA model. Thus, typical quality control efforts for schools in LandScan USA produced a population distribution similar to the validated level of quality control, and can be applied with confidence for policy, planning, and emergency situations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号