首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   27篇
  国内免费   1篇
测绘学   7篇
大气科学   31篇
地球物理   98篇
地质学   195篇
海洋学   41篇
天文学   39篇
自然地理   22篇
  2024年   1篇
  2022年   2篇
  2021年   8篇
  2020年   7篇
  2019年   6篇
  2018年   8篇
  2017年   14篇
  2016年   22篇
  2015年   24篇
  2014年   15篇
  2013年   27篇
  2012年   27篇
  2011年   30篇
  2010年   22篇
  2009年   34篇
  2008年   23篇
  2007年   31篇
  2006年   18篇
  2005年   25篇
  2004年   6篇
  2003年   10篇
  2002年   9篇
  2001年   8篇
  2000年   6篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1970年   2篇
排序方式: 共有433条查询结果,搜索用时 0 毫秒
81.
82.
83.
The in situ combustion (ISC) process is of interest as an enhanced oil recovery method because it is an alternative to traditional steam-based processes for heavy oil and bitumen recovery. ISC is a technique applicable outside the window of reservoir conditions deemed appropriate for steam injection (such as deeper and thinner reservoirs). The process involves complex chemical reactions and physical recovery mechanisms, and predicting the likelihood of successful ISC in field applications remains challenging. This paper describes a numerical investigation of the capability of different ISC kinetic models to predict the combustion behaviors of different types of oils (light oil, heavy oil, and bitumen). Three kinetic models (of Coats, Crookston, and Belgrave) were selected from literature and compared using data from four published combustion-tube experiments. The comparison procedure is as follows: (1) validate the numerical modeling of each kinetic model by matching the selected experimental results or duplicating the numerical results found in published literature; (2) adjust fluid viscosities and densities to match the fluid properties of each experiment;and (3) use each validated kinetic model to predict the performance of the other experiments without further tuning the kinetic parameters. The knowledge derived from the experiments provides guidance for choosing the appropriate kinetic model when no other data are available and for the preliminary design and screening study of a potential ISC project.  相似文献   
84.
85.
86.
87.
88.
89.
Dissolved Fe, Mn and Al concentrations (dFe, dMn and dAl hereafter) in surface waters and the water column of the Northeast Atlantic and the European continental shelf are reported. Following an episode of enhanced Saharan dust inputs over the Northeast Atlantic Ocean prior and during the cruise in March 1998, surface concentrations were enhanced up to 4 nmol L− 1 dFe, 3 nmol L− 1 dMn and 40 nmol L− 1 dAl and returned to 0.6 nmol L− 1 dFe, 0.5 nmol L− 1 dMn and 10 nmol L− 1 dAl towards the end of the cruise three weeks later. A simple steady state model (MADCOW, [Measures, C.I., Brown, E.T., 1996. Estimating dust input to the Atlantic Ocean using surface water aluminium concentrations. In: Guerzoni. S. and Chester. R. (Eds.), The impact of desert dust across the Mediterranean, Kluwer Academic Publishers, The Netherlands, pp. 301–311.]) was used which relies on surface ocean dAl as a proxy for atmospheric deposition of mineral dust. We estimated dust input at 1.8 g m− 2 yr− 1 (range 1.0–2.9 g m− 2 yr− 1) and fluxes of dFe, dMn and dAl were inferred. Mixed layer steady state residence times for dissolved metals were estimated at 1.3 yr for dFe (range 0.3–2.9 yr) and 1.9 yr for dMn (range 1.0–3.8 yr). The dFe residence time may have been overestimated and it is shown that 0.2–0.4 yr is probably more realistic. Using vertical dFe versus Apparent Oxygen Utilization (AOU) relationships as well as a biogeochemical two end member mixing model, regenerative Fe:C ratios were estimated respectively to be 20 ± 6 and 22 ± 5 μmol Fe:mol C. Combining the atmospheric flux of dFe to the upper water column with the latter Fe:C ratio, a ‘new iron’ supported primary productivity of only 15% (range 7%–56%) was deduced. This would imply that 85% (range 44–93%) of primary productivity could be supported by regenerated dFe. The open ocean surface data suggest that the continental shelf is probably not a major source of dissolved metals to the surface of the adjacent open ocean. Continental shelf concentrations of dMn, dFe, and to a lesser extent dAl, were well correlated with salinity and express mixing of a fresher continental end member with Atlantic Ocean water flowing onto the shelf. This means probably that diffusive benthic fluxes did not play a major role at the time of the cruise.  相似文献   
90.
An integrated approach consisting of fracture analysis, petrography, carbon, oxygen and strontium‐isotope analyses, as well as fluid‐inclusion micro‐thermometry, led to a better understanding of the evolution of fluid–rock interactions and diagenesis of the Upper Permian to Upper Triassic carbonates of the United Arab Emirates. The deposited carbonates were first marked by extensive early dolomitization. During progressive burial, the carbonates were affected by dolomite recrystallization as well as precipitation of vug and fracture‐filling dolomite, quartz and calcite cements. After considerable burial during the Middle Cretaceous, sub‐vertical north–south oriented fractures (F1) were cemented by dolomite derived from mesosaline to hypersaline fluids. Upon the Late Cretaceous maximum burial and ophiolite obduction, sub‐vertical east–west fractures (F2) were cemented by dolomite (Dc2) and saddle dolomite (Ds) derived from hot, highly saline fluids. Then, minor quartz cement has precipitated in fractures from hydrothermal brines. Fluid‐inclusion analyses of the various diagenetic phases imply the involvement of increasingly hot (200°C) saline brines (20 to 23% NaCl eq.). Through one‐dimensional burial history numerical modelling, the maximum temperatures reached by the studied rocks are estimated to be in the range of 160 to 200°C. Tectonically‐driven flux of hot fluids and associated diagenetic products are interpreted to have initiated during the Late Cretaceous maximum burial and lasted until the Oligocene–Miocene compressional tectonics and related uplift. The circulation of such hydrothermal brines led to partial dissolution of dolomites (Dc2 and Ds) and to precipitation of hydrothermal calcite C1 in new (mainly oriented north–south; F3) and pre‐existing, reactivated fractures. The integration of the obtained data confirms that the diagenetic evolution was controlled primarily by the interplay of the burial thermal evolution of the basin and the regional tectonic history. Hence, this contribution highlights the impacts of regional tectonics and basin history on diagenetic processes, which may subsequently affect reservoir properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号