Due to their potential retention capacity, clay minerals have been proposed for use in the engineered barriers for the storage of high-level radioactive actinides in deep geological waste repositories. However, there is still a lack of data on the sorption of actinides in clays in conditions simulating those of the repositories. The present article examines the sorption of two lanthanides (actinide analogues) in a set of smectitic clays (FEBEX bentonite, MX80 bentonite, hectorite, saponite, Otay montmorillonite, and Texas montmorillonite). Distribution coefficients (Kd) were determined in two media: water and 0.02 mol L−1 Ca, the latter representing the cement leachates that may modify the chemical composition of the water in contact with the clay. The Kd values of the lanthanides used in the experiments (La and Lu) varied greatly (25-50 000 L kg−1) depending on the ionic medium (higher values in water than in the Ca medium), the initial lanthanide concentration (up to three orders of magnitude decrease inversely with lanthanide concentration), and the examined clay (up to one order of magnitude for the same lanthanide and sorption medium). Freundlich and Langmuir isotherms were used to fit sorption data to allow comparison of the sorption parameters among smectites. The model based on the two-site Langmuir isotherms provided the best fit of the sorption data, confirming the existence of sorption sites with different binding energies. The sites with higher sorption affinity were about 6% of the total sorption capacity in the water medium, and up to 17% in the Ca medium, although in this latter site sorption selectivity was lower. The wide range of Kd values obtained regarding the factors examined indicated that the retention properties of the clays should also be considered when selecting a suitable clay for engineered barriers. 相似文献
After the Wenchuan earthquake, the overall post-reconstruction of the affected area was completed in 2 years with significant achievements in a top-down fashion. However, the secondary large-scale mass movements and floods that followed the earthquake have shattered mountain settlements and resulted in serious loss of life and property over the last ten years. Local people have taken their own initiative for house reconstruction and recovery. Having taken the tremendous government-driven reconstruction into consideration, the current study aims to understand the contribution of bottom-up approach in whole reconstruction process in Jianjiang River, Longmen Mountain Town of Sichuan, China. This study reveals that in the process of individual rebuilding, local households have tried to construct houses by using more contemporary structures and local resources to rebuild smaller buildings. Such reconstruction activities have changed their lifestyle and source of income to cope with future disasters and adapt with the post-disaster recovery process. Rural households shifted their income sources from tourism to labour migration while revitalizing farming for food and additional income. More than half of residents have no worry about the risk of disasters in reconstruction areas. The bottom-up adaptation can be more sustainable in Longmen Mountain area and provide a reference for other rural areas under recovery after disasters.
International Journal of Earth Sciences - The geometry and emplacement of the ~ 96 km2, Late Cretaceous Sintra Igneous complex (SIC, ca. 80 Ma) into the West Iberian passive... 相似文献
Fine-grained peraluminous synkinematic leuco-monzogranites (SKG), of Cambro-Ordovician age, occur as veins and sills (up to 20–30 m thick) in the Deep Freeze Range, within the medium to high-grade metamorphics of the Wilson Terrane. Secondary fibrolite + graphite intergrowths occur in feldspars and subordinately in quartz. Four main solid and fluid inclusion populations are observed: primary mixed CO2+H2O inclusions + Al2SiO5 ± brines in garnet (type 1); early CO2-rich inclusions (± brines) in quartz (type 2); early CO2+CH4 (up to 4 mol%)±H2O inclusions + graphite + fibrolite in quartz (type 3); late CH4+CO2+N2 inclusions and H2O inclusions in quartz (type 4). Densities of type 1 inclusions are consistent with the crystallization conditions of SKG (750°C and 3 kbar). The other types are post-magmatic: densities of type 2 and 3 inclusions suggest isobaric cooling at high temperature (700–550°C). Type 4 inclusions were trapped below 500°C. The SKG crystallized from a magma that was at some stage vapour-saturated; fluids were CO2-rich, possibly with immiscible brines. CO2-rich fluids (±brines) characterize the transition from magmatic to post-magmatic stages; progressive isobaric cooling (T<670°C) led to a continuous decrease offO2 can entering in the graphite stability field; at the same time, the feldspars reacted with CO2-rich fluids to give secondary fibrolite + graphite. Decrease ofT andfO2 can explain the progressive variation in the fluid composition from CO2-rich to CH4 and water dominated in a closed system (in situ evolution). The presence of N2 the late stages indicates interaction with external metamorphic fluids.Contribution within the network Hydrothermal/metamorphic water-rock interactions in crystalline rocks: a multidisciplinary approach on paleofluid analysis. CEC program: Human Capital and Mobility 相似文献
Vertical flow cells (VFCs) are key components of passive acid mine drainage (AMD) treatment systems and require organic substrates that create anaerobic conditions and encourage bacterial sulfate reduction. In the high elevation desert of Potosí, Bolivia, the low productivity landscape limits the availability of sustainable and economical organic substrates. Locally available brewery waste, llama manure, and cow manure were evaluated as potential VFC substrates in a preliminary laboratory fed-batch study to assist in passive treatment system design. Two abandoned AMD discharges were collected from Cerro Rico de Potosí. Discharge A had an initial pH of 2.96, specific conductance of 3.31 mS/cm, and acidity of 1,350 mg/L as CaCO3 equivalent. Discharge B had an initial pH of 3.85, specific conductance of 1.87 mS/cm, and acidity of 1,000 mg/L as CaCO3 equivalent. Triplicate fed-batch reactors were set up in 1-L cubitainers with each potential substrate exposed to each AMD, yielding a total of 18 reactors exposed for 9 days and sampled two times for anions and dissolved metals. Cow manure reactors exhibited the greatest pH and alkalinity increases. Cd, Co, Fe, Mn, Ni, Pb, and Zn decreased in all reactors. SO4 concentrations only decreased in brewery waste reactors. However, SO4 reducing bacteria was higher for cow manure reactors. Results suggest that llama and cow manure are the more labile substrates, with llama manure being the most affordable. Brewery waste could be a suitable less-labile long-term substrate amendment. However, longer-term studies are needed to determine the optimum VFC substrate mixture in this unique circumstance. 相似文献
A study has been undertaken to determine sulfur in geological samples by coupled analytical techniques. Two measurement methods have been developed: one using an electric furnace coupled to an ion chromatograph (electric furnace-IC) and another using infrared (IR) and quadrupole mass spectrometry (QMS) for evolved gas analysis (EGA) coupled with a thermogravimetric analyser (TGA). In the electric furnace-IC method, measurement was performed without any sample pre-treatment. The measurement conditions were optimised by varying sample quantity, type of catalyst (WO3, Cu, W and V2O5) and sample/catalyst ratio, and the detection limit was 10 μg g−1. Sulfur ores decompose at different temperatures. However, TGA-EGA allowed identification of the different forms of sulfur in the sample, even when they were found in very low concentrations, because the sulfur was continuously analysed. The developed chromatographic method allowed simultaneous analysis of several sample components, such as S, Cl and F, with a low detection limit. The method was much faster and more specific than the methods described in the literature. The results of the sulfur determination had low scatter, possibly because the samples underwent little handling during analysis: the operator only weighed and placed the sample in the furnace, the rest of the measurement process was fully automated. The results obtained by both the developed methods have been validated by using reference materials and comparison with combustion-IR spectroscopy, a standard method for determining total sulfur in a sample. 相似文献
Compilation of some new data on ophiolites for Greece and Yugoslavia, and published data from previous studies, indicate that platinum-group element (PGE) and gold concentrations in chromite ores are generally low, ranging from less than 100 ppb to a few hundred ppb. However, samples from several ophiolite complexes exhibit an enrichment (of a few ppm) (a) only in Os, Ir and Ru,(b) only in Pt and/or Pd or (c) in all PGE. This enrichment (up to 10s ppm) is mainly related with chromitites hosted in supra-Moho dunites and dunites of the uppermost stratigraphic levels of the mantle sequence and it seems to be local, independent of the chromitite major element composition and the chromite potential of the ophiolite complexes. The contents of PGE combined with less chalcophile elements (Ni, Co, Cu), the ratios of incompatible/compatible elements, and PGE-patterns provide evidence for discrimination between chromitites derived from primitive magmas and those derived from partially fractionated magmas, although they have a similar major element composition. Thus, they can be used for a stratigraphic orientation in the mantle sequence, and therefore for exploration targets. Moreover, PGE data offer valuable information for the evaluation of the chromite potential in ophiolite complexes. The most promising ophiolites seem to be those which apart from the petrological and geochemical characteristics indicating extensive degree of partial melting in the mantle source contain only one chromite ore type (the other type being only in small proportion) of limited compositional variation, in both major elements and PGE, low ratios of , while PGE-enriched chromitites in the mantle sequence are only occasionally present. In contrast, ophiolites which contain both high-Cr and -Al chromitites, and where their chalcophile element data implies relatively extensive fractionation trend are not good exploration targets for chromite ores, although they are related with a SSZ environment. 相似文献
Wavelength dispersive X-ray fluorescence spectrometry (WD-XRF) is widely used for the analysis of soils and sediments using well characterised procedures. However, difficulties can occur with samples such as unknowns containing small amounts of ore materials and samples collected from contaminated sites where trace elemental concentrations can exceed the concentration range for routine analysis. We studied the performance of a commercially available method, based on fundamental parameters (FP) to correct matrix effects. The spectrometer was originally calibrated with elemental or simple compound calibrants. Samples were analysed as pressed powder pellets. Eighteen sediment and soil reference materials, three of them with certified values for some of their constituents, were used to evaluate accuracy, by comparing results with recommended values and their standard deviations (RV ± 2s) or certified values and their confidence intervals (CV ± Cl). When results fell systematically outside these intervals, calibrations were refined with geochemical reference materials. The best agreement of results with recommended and certified values was obtained when the contents of H2O and C in each sample were included as matrix constituents during calculations. The detection limits of trace elements tended to be relatively high, because the measuring conditions employed were not maximised for sensitivity. The main advantage of the method tested was that it enabled the analysis of samples with high concentrations of trace elements and the determination of elements such as F, Bi, Sb and W, which are not commonly included in quantitative XRF analysis of geological samples. 相似文献