首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   2篇
大气科学   2篇
地球物理   19篇
地质学   17篇
海洋学   6篇
天文学   19篇
自然地理   2篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   6篇
  2010年   7篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   6篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1994年   1篇
  1991年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1975年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
51.
A large Luneberg-type antenna with accessories is described as a means of simultaneously monitoring a large number of stars for possible intelligent signals. Various contacting strategies are compared on their probability of success and arguments are advanced favoring a program of transmission at a wavelength of 21 cm to the nearest stars.  相似文献   
52.
Since the earliest use of this technology, a growing number of researchers have employed passive Radio Frequency Identification (RFID) transponders to track sediment transport in gravel rivers and coastal environments. RFID transponders are advantageous because they are inexpensive, durable and use unique codes that allow sediment particle mobility and displacement to be assessed on a clast‐by‐clast basis. Despite these advantages, this technology is in need of a rigorous error and detection analysis. Many studies work with a precision of ~1 m, which is insufficient for some applications, and signal shadowing can occur due to clustering of tagged particles. Information on in‐field performance is also incomplete with respect to burial and submergence, especially for different transponders and antennae combinations. The objectives of this study are to qualify and quantify the factors that influence the detection zone of RFID tracers including antenna type, transponder size, transponder orientation, burial depth, submergence and clustering. Results of this study show that the detection zone is complex in shape due to a set of lobes in the detection field and provide a better understanding of transponder detection shape for different RFID transponder/antenna combinations. This study highlights a strong influence of clustering and submergence, but no significant effect of burial. Finally we propose standard operating procedures for tagging and tracking in rivers and coastal environments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
53.
This paper reports a radiofrequency identification (RFID) tracing experiment implemented in a high‐sediment‐load mountain stream typical of alpine gravel‐bed torrents. The study site is the Bouinenc Torrent, a tributary to the Bléone River in southeast France that drains a 38·9‐km² degraded catchment. In spring 2008, we deployed 451 tracers with b‐axis ranging from 23 to 520 mm. Tracers were seeded along eight cross‐sections located in the upstream part of the lowest 2·3 km of the stream. Three tracer inventories were implemented in July 2008, 2009 and 2010. Recovery rates calculated for mobile tracers declined from 78% in 2008 to 45% in 2009 and 25% in 2010. Observations of tracer displacement revealed very high sediment dispersion, with frontrunners having travelled more than 2 km only three months after their deployment. The declining recovery rate over time was interpreted as resulting from rapid dispersion rather than deep burial. We evaluated that 64% of the tracers deployed in the active channel were exported from the 2·3‐km study reach three years after the onset of the tracing experiment. Travel distances were characterized by right‐skewed and heavy‐tailed distributions, correctly fitted by a power‐law function. This supports the idea that in gravel‐bed rivers with abundant sediment supply relative to transport capacity, bedload transport can be viewed as a superdiffusive sediment dispersion process. It is also shown that tracers initially deployed in the low‐flow channel were characterized by a 15‐ to 30‐fold increase of mobility compared to tracers deployed in gravel bars. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
54.
Many studies have defined the interrelationships between climate, forest disturbance, and runoff at small scales (<100 km2), but few have translated these relationships to large watersheds (>500 km2). In this study, we explore the relationship between climate, extreme forest fire seasons, mountain pine beetle (MPB) outbreaks, and runoff in eight large watersheds within the Fraser and Peace drainage basins in British Columbia (BC), Canada from 1981–2019. Using a climate index based on precipitation and air temperature anomalies, we find extreme forest fire seasons (those that burned >5% of a watershed's area) are most likely to occur when a warm/dry summer is preceded by multiple seasons of cool/wet conditions. Using the climate suitability class (CSC) model to explore the relationship between climate and MPB outbreaks, we validate previous findings that lower-than-average precipitation, warm growing season temperatures, and lack of extremely cold temperatures during winter are connected to MPB outbreaks within central BC. However, the CSC model needs improvements to accurately assess MPB suitability in northern watersheds that are located outside the model's calibration region, either through weighted variables or lower degree day thresholds. Minimal runoff response occurs from these forest disturbances, with the most prominent runoff change being related to the 2014 fire season in the Osilinka and Mesilinka watersheds. The limited effects of forest disturbance on annual runoff are likely related to large watershed sizes, low percentages of disturbed area in some study watersheds and post-MPB forest dynamics. These results provide valuable insight into the interrelationships of climate, forest disturbance and runoff in large Canadian boreal forested watersheds.  相似文献   
55.
A finite-volume formulation is presented that solves the three-dimensional, nonhydrostatic Navier–Stokes equations with the Boussinesq approximation on an unstructured, staggered, z-level grid, with the goal of simulating nonhydrostatic processes in the coastal ocean with grid resolutions of tens of meters. In particular, the code has been developed to simulate the nonlinear, nonhydrostatic internal wave field in the littoral ocean. The method is based on the formulation developed by Casulli, in that the free-surface and vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly with the second-order Adams–Bashforth method, while the pressure-correction method is employed for the nonhydrostatic pressure in order to achieve overall second-order temporal accuracy. Advection of momentum is accomplished with an Eulerian discretization which conserves momentum in cells that do not contain the free surface, and scalar advection is discretized in a way that ensures consistency with continuity, thereby ensuring local and global mass conservation using a velocity field that conserves volume on a local and global basis. The nonhydrostatic pressure field is solved efficiently using a block-Jacobi preconditioner, and while stability is limited by the internal gravity wave speed and vertical advection of momentum, applications requiring relatively small time steps due to accuracy or stability constraints are run efficiently on parallel computers, since the present formulation is written entirely with the message-passing interface (MPI). The ParMETIS libraries are employed in order to achieve a load-balanced parallel partitioning that minimizes interprocessor communication, and the grid is reordered to optimize per-processor performance by limiting cache misses while accessing arrays in memory. Test cases demonstrate the ability of the code to efficiently and accurately compute the nonhydrostatic lock exchange and internal waves in idealized as well as real domains, and we evaluate the parallel efficiency of the code using up to 32 processors.  相似文献   
56.
During the last glacial cycle an intriguing feature of the British-Irish Ice Sheet was the North Sea Lobe (NSL); fed from the Firth of Forth and which flowed south and parallel to the English east coast. The controls on the formation and behaviour of the NSL have long been debated, but in the southern North Sea recent work suggests the NSL formed a dynamic, oscillating terrestrial margin operating over a deforming bed. Further north, however, little is known of the behaviour of the NSL or under what conditions it operated. This paper analyses new acoustic, sedimentary and geomorphic data in order to evaluate the glacial landsystem imprint and deglacial history of the NSL offshore from NE England. Subglacial tills (AF2/3) form a discontinuous mosaic interspersed with bedrock outcrops across the seafloor, with the partial excavation and advection of subglacial sediment during both advance and retreat producing mega-scale glacial lineations and grounding zone wedges. The resultant ‘mixed-bed’ glacial landsystem is the product of a dynamic switch from a terrestrial piedmont-lobe margin with a net surplus of sediment to a partially erosive, quasi-stable, marine-terminating, ice stream lobe as the NSL withdrew northwards. Glaciomarine sediments (AF4) drape the underlying subglacial mixed-bed imprint and point to a switch to tidewater conditions between 19.9 and 16.5 ka cal BP as the North Sea became inundated. The dominant controls on NSL recession during this period were changing ice flux through the Firth of Forth ice stream onset zone and water depths at the grounding line; the development of the mixed-bed landsystem being a response to grounding line instability. © 2018 John Wiley & Sons, Ltd.  相似文献   
57.
58.
Land-based eutrophication is often associated with blooms of green macroalgae, resulting in negative impacts on seagrasses. The generality of this interaction has not been studied in upwelling-influenced estuaries where oceanic nutrients dominate seasonally. We conducted an observational and experimental study with Zostera marina L. and ulvoid macroalgae across an estuarine gradient in Coos Bay, Oregon. We found a gradient in mean summer macroalgal biomass from 56.1 g dw 0.25 m−2 at the marine site to 0.3 g dw 0.25 m−2 at the riverine site. Despite large macroalgal blooms at the marine site, eelgrass biomass exhibited no seasonal or interannual declines. Through experimental manipulations, we found that pulsed additions of macroalgae biomass (+4,000 mL) did not affect eelgrass in marine areas, but it had negative effects in riverine areas. In upwelling-influenced estuaries, the negative effects of macroalgal blooms are context dependent, affecting the management of seagrass habitats subject to nutrient inputs from both land and sea.  相似文献   
59.
Abstract— We report results of delay‐Doppler observations of 1999 JM8 with the Goldstone 8560 MHz (3.5 cm) and Arecibo 2380 MHz (13 cm) radars over 18 days in July‐August 1999. The images place thousands of pixels on the asteroid and achieve range resolutions as fine as 15 m/pixel. The images reveal an asymmetric, irregularly shaped object with a typical overall dimension within 20% of 7 km. If we assume that 1999 JM8's effective diameter is 7 km, then the absolute magnitude, 15.15, and the average Goldstone radar cross section, 2.49 km2, correspond to optical and radar albedos of 0.02 and 0.06, establishing that 1999 JM8 is a dark object at optical and radar wavelengths. The asteroid is in a non‐principal axis spin state that, although not yet well determined, has a dominant periodicity of ?7 days. However, images obtained between July 31 and August 9 show apparent regular rotation of features from day to day, suggesting that the rotation state is not far from principal axis rotation. 1999 JM8 has regions of pronounced topographic relief, prominent facets several kilometers in extent, numerous crater‐like features between ?100 m and 1.5 km in diameter, and features whose structural nature is peculiar. Arecibo images provide the strongest evidence to date for a circular polarization ratio feature on any asteroid. Combined optical and radar observations from April 1990 to December 2000 permit computation of planetary close approach times to within ± 10 days over the interval from 293 to at least 2907, one of the longest spans for any potentially hazardous asteroid. Integration of the orbit into the past and future shows close approaches to Earth, Mars, Ceres, and Vesta, but the probability of the object impacting Earth is zero for at least the next nine centuries.  相似文献   
60.
We present delay-Doppler images of Saturn's rings based on radar observations made at Arecibo Observatory between 1999 and 2003, at a wavelength of 12.6 cm and at ring opening angles of 20.1°?|B|?26.7°. The average radar cross-section of the A ring is ∼77% relative to that of the B ring, while a stringent upper limit of 3% is placed on the cross-section of the C ring and 9% on that of the Cassini Division. These results are consistent with those obtained by Ostro et al. [1982, Icarus 49, 367-381] from radar observations at |B|=21.4°, but provide higher resolution maps of the rings' reflectivity profile. The average cross-section of the A and B rings, normalized by their projected unblocked area, is found to have decreased from 1.25±0.31 to 0.74±0.19 as the rings have opened up, while the circular polarization ratio has increased from 0.64±0.06 to 0.77±0.06. The steep decrease in cross-section is at variance with previous radar measurements [Ostro et al., 1980, Icarus 41, 381-388], and neither this nor the polarization variations are easily understood within the framework of either classical, many-particle-thick or monolayer ring models. One possible explanation involves vertical size segregation in the rings, whereby observations at larger elevation angles which see deeper into the rings preferentially see the larger particles concentrated near the rings' mid-plane. These larger particles may be less reflective and/or rougher and thus more depolarizing than the smaller ones. Images from all four years show a strong m=2 azimuthal asymmetry in the reflectivity of the A ring, with an amplitude of ±20% and minima at longitudes of 67±4° and 247±4° from the sub-Earth point. We attribute the asymmetry to the presence of gravitational wakes in the A ring as invoked by Colombo et al. [1976, Nature 264, 344-345] to explain the similar asymmetry long seen at optical wavelengths. A simple radiative transfer model suggests that the enhancement of the azimuthal asymmetry in the radar images compared with that seen at optical wavelengths is due to the forward-scattering behavior of icy ring particles at decimeter wavelengths. A much weaker azimuthal asymmetry with a similar orientation may be present in the B ring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号