首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   308篇
  免费   16篇
  国内免费   1篇
测绘学   8篇
大气科学   30篇
地球物理   75篇
地质学   110篇
海洋学   48篇
天文学   30篇
自然地理   24篇
  2021年   2篇
  2020年   5篇
  2019年   1篇
  2018年   12篇
  2017年   21篇
  2016年   10篇
  2015年   7篇
  2014年   12篇
  2013年   15篇
  2012年   10篇
  2011年   21篇
  2010年   19篇
  2009年   11篇
  2008年   18篇
  2007年   15篇
  2006年   11篇
  2005年   7篇
  2004年   21篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   8篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   5篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   7篇
  1988年   1篇
  1987年   5篇
  1986年   5篇
  1985年   12篇
  1984年   8篇
  1983年   3篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有325条查询结果,搜索用时 31 毫秒
81.
Migration velocity analysis, a method for determining long wavelength velocity structure, is a critical step in prestack imaging. Solution of this inverse problem is made difficult by a multimodal objective function; a parameter space often vast in extent; and an evaluation procedure for candidate solutions, involving the calculation of depth-migrated image gathers, that can be prohibitively expensive. Recognizing the global nature of the problem, we employ a genetic algorithm (GA) in the search for the optimum velocity model. In order to describe a model efficiently, regions of smooth variation are identified and sparsely parametrized. Region boundaries are obtained via map migration of events picked on the zero-offset time section. Within a region, which may contain several reflectors, separate components describe long and short wavelength variations, eliminating from the parameter space, models with large velocity fluctuations. Vital to the success of the method is rapid model evaluation, achieved by generating image gathers only in the neighbourhood of specific reflectors. Probability of a model, which we seek to maximize, is derived from the flatness of imaged events. Except for an initial interpretation of the zero-offset time section, our method is automatic in that it requires no picking of residual moveout on migrated gathers. Using an example data set from the North Sea, we show that it is feasible to solve for all velocity parameters in the model simultaneously: the method is global in this respect also.  相似文献   
82.
Concerns for river health in the Murray-Darling Basin (MDB) area and shifting priorities for water use have led to a significant process of water reform over the last decade. The MDB area, also known as the food bowl of Australia, produces much of the country's food and is home to a significant portion of the population. A long-term drought, historical over-allocation of water for irrigation and climate variability have led to mounting concerns about the long-term viability of the rivers. While the reform process has resulted in the Commonwealth government taking control of the rivers from the States, it has also been influenced by changes in governments and consequent shifts in water allocation priorities from a privileging of agriculture to a broader approach encompassing economic, environmental and social concerns. This had led to uncertainty for the people and communities in the Basin and some confusion between the various layers of governance structures. This paper presents the results of exploratory research conducted with key, high-level stakeholders involved in water reform to examine their perceptions of the evolving water policy process. Despite agreement amongst stakeholders that returning water to the environment to ensure river health is critical, our research reveals significant tensions between stakeholders concerning the evolving process, particularly centred on the potential social outcomes and fairness and equity. This suggests the need for more integrated and transparent governance structures, attention to levels of trust between partners and a common vision that incorporates environmental, economic and social goals.  相似文献   
83.
84.
Microbial mats were collected from a variety of sites near hydrocarbon vents along the slope in the northern Gulf of Mexico and, for comparison, from Warm Mineral Springs, Florida, USA. A predominant microorganism in each of the mats was the giant bacterium,Beggiatoa. Diameters of the bacterial filaments ranged from about 6 µm to approximately 200 µm. The latter organisms are the largest prokaryotic organisms yet found. All filaments over about 10 µm in diameter contained a large central vacuole, producing a cell with the cytoplasm as a cylindrical tube underlying the cytoplasmic membrane. Sulfur globules were confined to this peripheral layer. Push cores often contained pyrite tubules whose appearance is suggestive of aBeggiatoa origin. Determinations of 13C inBeggiatoa mats from vents along the Louisiana slope yielded values in the range of –26.6 to –27.9 (PDB), suggesting an unusually high degree of isotope fractionation (–24.9) relative to the carbon source in the ambient seawater, which is typical of sulfur-oxidizing chemoautotrophs. The presence of SO (elemental sulfur) within cells ofBeggiatoa resulting from oxidation of H2S supports the importance of bacterial sulfate reduction processes in the underlying vents for the sustenance of theBeggiatoa mats.  相似文献   
85.
On March 19, 1984, more than 170000 gallons of oil were spilled into the Columbia River. We had recently developed analytical methods for estimating the exposure of fish to aromatic compounds by measuring the concentrations of metabolites of these contaminants in fish bile. The oil spill provided an opportunity to field test our methods in assessing the exposure of fish to petroleum aromatic compounds from the spilled oil. Our findings indicated that, within 5 days after the spill, mean concentrations of metabolites of aromatic compounds in the bile of white sturgeon (Acipenser transmontanus) captured 57 miles downstream from the spill were significantly higher than those of sturgeon caught upriver.  相似文献   
86.
As part of the 2002 Western Arctic Shelf–Basin Interactions (SBI) project, spatio-temporal variability of dissolved inorganic carbon (DIC) was employed to determine rates of net community production (NCP) for the Chukchi and western Beaufort Sea shelf and slope, and Canada Basin of the Arctic Ocean. Seasonal and spatial distributions of DIC were characterized for all water masses (e.g., mixed layer, halocline waters, Atlantic layer, and deep Arctic Ocean) of the Chukchi Sea region during field investigations in spring (5 May–15 June 2002) and summer (15 July–25 August 2002). Between these periods, high rates of phytoplankton production resulted in large drawdown of inorganic nutrients and DIC in the Polar Mixed Layer (PML) and in the shallow depths of the Upper Halocline Layer (UHL). The highest rates of NCP (1000–2850 mg C m−2 d−1) occurred on the shelf in the Barrow Canyon region of the Chukchi Sea and east of Barrow in the western Beaufort Sea. A total NCP rate of 8.9–17.8×1012 g for the growing season was estimated for the eastern Chukchi Sea shelf and slope region. Very low inorganic nutrient concentrations and low rates of NCP (<15–25 mg C m−2 d−1) estimated for the mixed layer of the adjacent Arctic Ocean basin indicate that this area is perennially oligotrophic.  相似文献   
87.
88.
89.
The natural Australian landscape sustains a mosaic of wetlands that range from permanently wet to temporary. This diversity of wetland types and habitats provides for diverse biotic communities, many of which are specific to individual wetlands. This paper explores the prospects for southern Australian wetlands under modified water regime and salinity induced by climatic changes. Extended droughts predicted as a consequence of climate change (lower rainfall and higher temperatures) combined with human-induced changes to the natural hydrological regime will lead to reductions in the amount of water available for environmental and anthropogenic uses. Reduced runoff and river flows may cause the loss of some temporary wetland types that will no longer hold water long enough to support hydric communities. Species distributions will shift and species extinctions may result particularly across fragmented or vulnerable landscapes. Accumulation of salts in wetlands shift species-rich freshwater communities to species-poor salt tolerant communities. Wetlands will differ in ecological response to these changes as the salinity and drying history of each wetland will determine its resilience: in the short term some freshwater communities may recover but they are unlikely to survive and reproduce under long term increased salinity and altered hydrology. In the long term such salinized wetlands with altered hydrology will need to be colonized by salt tolerant species adapted for the new hydrological conditions if they are to persist as functional wetlands. As the landscape becomes more developed, to accommodate the need for water in a warmer drying climate, increasing human intervention will result in a net loss of wetlands and wetland diversity.  相似文献   
90.
Recent detection of methane (CH4) on Mars has generated interest in possible biological or geological sources, but the factors responsible for the reported variability are not understood. Here we explore one potential sink that might affect the seasonal cycling of CH4 on Mars - trapping in ices deposited on the surface. Our apparatus consisted of a high-vacuum chamber in which three different Mars ice analogs (water, carbon dioxide, and carbon dioxide clathrate hydrates) were deposited in the presence of CH4 gas. The ices were monitored for spectroscopic evidence of CH4 trapping using transmission Fourier-Transform Infrared (FT-IR) spectroscopy, and during subsequent sublimation of the ice films the vapor composition was measured using mass spectrometry (MS). Trapping of CH4 in water ice was confirmed at deposition temperatures <100 K which is consistent with previous work, thus validating the experimental methods. However, no trapping of CH4 was observed in the ice analogs studied at warmer temperatures (140 K for H2O and CO2 clathrate, 90 K for CO2 snow) with approximately 10 mTorr CH4 in the chamber. From experimental detection limits these results provide an upper limit of 0.02 for the atmosphere/ice trapping ratio of CH4. If it is assumed that the trapping mechanism is linear with CH4 partial pressure and can be extrapolated to Mars, this upper limit would indicate that less than 1% is expected to be trapped from the largest reported CH4 plume, and therefore does not represent a significant sink for CH4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号