首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   574篇
  免费   16篇
  国内免费   2篇
测绘学   17篇
大气科学   44篇
地球物理   132篇
地质学   214篇
海洋学   12篇
天文学   142篇
综合类   1篇
自然地理   30篇
  2023年   2篇
  2022年   2篇
  2021年   11篇
  2020年   10篇
  2019年   6篇
  2018年   19篇
  2017年   17篇
  2016年   26篇
  2015年   24篇
  2014年   24篇
  2013年   31篇
  2012年   22篇
  2011年   25篇
  2010年   22篇
  2009年   40篇
  2008年   21篇
  2007年   23篇
  2006年   20篇
  2005年   21篇
  2004年   12篇
  2003年   19篇
  2002年   13篇
  2001年   8篇
  2000年   11篇
  1999年   8篇
  1998年   23篇
  1997年   6篇
  1996年   7篇
  1995年   6篇
  1994年   14篇
  1993年   3篇
  1992年   4篇
  1991年   8篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   5篇
  1986年   6篇
  1984年   8篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1979年   3篇
  1978年   6篇
  1977年   2篇
  1974年   5篇
  1973年   7篇
  1972年   3篇
  1971年   5篇
  1969年   2篇
排序方式: 共有592条查询结果,搜索用时 15 毫秒
11.
Anisotropic material properties are usually neglected during inversions for source parameters of earthquakes. In general anisotropic media, however, moment tensors for pure-shear sources can exhibit significant non-double-couple components. Such effects may be erroneously interpreted as an indication for volumetric changes at the source. Here we investigate effects of anisotropy on seismic moment tensors and radiation patterns for pure-shear and tensile-type sources. Anisotropy can significantly influence the interpretation of the source mechanisms. For example, the orientation of the slip within the fault plane may affect the total seismic moment. Also, moment tensors due to pure-shear and tensile faulting can have similar characteristics depending on the orientation of the elastic tensor. Furthermore, the tensile nature of an earthquake can be obscured by near-source anisotropic properties. As an application, we consider effects of inhomogeneous anisotropic properties on the seismic moment tensor and the radiation patterns of a selected type of micro-earthquakes observed in W-Bohemia. The combined effects of near-source and along-path anisotropy cause characteristic amplitude distortions of the P, S1 and S2 waves. However, the modeling suggests that neither homogeneous nor inhomogeneous anisotropic properties alone can explain the observed large non-double-couple components.The results also indicate that a correct analysis of the source mechanism, in principle, is achievable by application of anisotropic moment tensor inversion.  相似文献   
12.
13.
The Lufilian arc is an orogenic belt in central Africa that extends between Zambia and the Democratic Republic of Congo (DRC) and deforms the Neoproterozoic-Lower Palaeozoic metasedimentary succession of the Katanga Supergroup. The arc contains thick bodies of fragmental rocks that include blocks reaching several kilometres in size. Some megablocks contain Cu and Cu–Co-mineralised Katangan strata. These coarse clastic rocks, called the Katangan megabreccias, have traditionally been interpreted in the DRC as tectonic breccias formed during Lufilian orogenesis due to friction underneath Katangan nappes. In mid-90th, several occurrences in Zambia have been interpreted in the same manner. Prominent among them is an occurrence at Mufulira, considered by previous workers as a ≈1000 m thick tectonic friction breccia containing a Cu–Co-mineralised megablock.This paper presents new results pertaining to the lower stratigraphic interval of the Katanga Supergroup at Mufulira and represented by the Roan Group and the succeeding Mwashya Subgroup of the Guba Group. The interval interpreted in the past as tectonic Roan megabreccia appears to be an almost intact sedimentary succession, the lower part of which consists of Roan Group carbonate rocks with siliciclastic intercalations containing several interbeds of matrix-supported conglomerate. A Cu–Co-mineralised interval is not an allochthonous block but a part of the stratigraphic succession underlain and overlain by conglomerate beds, which were considered in the past as tectonic friction breccias. The overlying megabreccia is a syn-rift sedimentary olistostrome succession that rests upon the Roan strata with a subtle local unconformity. The olistostrome succession consists of three complexes typified by matrix-supported debris-flow conglomerates with Roan clasts. Some of the conglomerate beds pass upwards to normally graded turbidite layers and are accompanied by solitary slump beds. The three conglomeratic assemblages are separated by two intervals of sedimentary breccia composed of allochthonous Roan blocks interpreted as mass-wasting debris redeposited into the basin by high-volume sediment-gravity flows. Sedimentary features are the primary characteristics of the conglomerate interbeds in the Roan succession and of the overlying megabreccia (olistostrome) sequence. Both lithological associations are slightly sheared and brecciated in places, but stratigraphic continuity is retained throughout their succession. The olistostrome is deformed by an open fold, the upper limb of which is truncated by and involved in a shear zone that extends upwards into Mwashya Subgroup strata thrust above.Based on the sedimentary genesis of the megabreccia, local tectonostratigraphic relations and correlation with the succession present in the Kafue anticline to the west, the Mwashya Subgroup, formerly considered as a twofold unit, is redefined here as a three-part succession. The lower Mwashya consists of an olistostrome complex defined as the Mufulira Formation, the middle Mwashya (formerly lower Mwashya) is a mixed succession of siliciclastic and carbonate strata locally containing silicified ooids and tuff interbeds, and the term upper Mwashya is retained for a succession of black shales with varying proportions of siltstone and sandstone interlayers. The sedimentary genesis and stratigraphic relations of the megabreccia at Mufulira imply that the position and tectonostratigraphic context of the Katangan Cu and Cu–Co orebodies hosted in megablocks associated with fragmental rocks, which were in the past interpreted as tectonic friction breccias, need to be critically re-assessed in the whole Lufilian arc.  相似文献   
14.
15.
Diffusive mass exchange into immobile water regions within heterogeneous porous aquifers influences the fate of solutes. The percentage of immobile water is often unidentified in natural aquifers though. Hence, the mathematical prediction of solute transport in such heterogeneous aquifers remains challenging. The objective of this study was to find a simple analytical model approach that allows quantifying properties of mobile and immobile water regions and the portion of immobile water in a porous system. Therefore, the Single Fissure Dispersion Model (SFDM), which takes into account diffusive mass exchange between mobile and immobile water zones, was applied to model transport in well‐defined saturated dual‐porosity column experiments. Direct and indirect model validation was performed by running experiments at different flow velocities and using conservative tracer with different molecular diffusion coefficients. In another column setup, immobile water regions were randomly distributed to test the model applicability and to determine the portion of immobile water. In all setups, the tracer concentration curves showed differences in normalized maximum peak concentration, tailing and mass recovery according to their diffusion coefficients. These findings were more pronounced at lower flow rates (larger flow times) indicating the dependency of diffusive mass exchange into immobile water regions on tracers' molecular diffusion coefficients. The SFDM simulated all data with high model efficiency. Successful model validation supported the physical meaning of fitted model parameters. This study showed that the SFDM, developed for fissured aquifers, is applicable in porous media and can be used to determine porosity and volume of regions with immobile water. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
16.
17.
18.
19.
20.
Detrital zircons in five sedimentary samples, MC1 to MC5, from the bottom of the Chuanlinggou Formation in the Ming Tombs District, Beijing, were dated with the LA-ICP-MS and SHRIMP U–Pb methods. Age spectra of the five samples show a major peak at 2500 Ma and a secondary peak at 2000 Ma, suggesting their provenances were mainly from the crystalline basement of the North China Craton and the Trans-North China Orogen. The youngest zircon has an age of 1673 ± 44 Ma, indicating that the Chuanlinggou Formation was deposited after this age. From sample MC4 to MC5, lithology changed from a clastic rock (fine-grained sandstone) to a carbonate rock (fine-grained dolomite), suggesting that the depositional basin became progressively deeper. The age spectrum of sample MC5 shows a major peak at 2500 Ma and a secondary peak at 2000 Ma. Sample MC4, which is stratigraphically lower than sample MC5, only had one peak at 2500 Ma. We conclude that there was a transgressive event when sediments represented by MC5 was deposited, and seawater carried ca. 2000 Ma clastic materials to the basin where the Chuanlinggou Formation was deposited, leading to the addition of ca. 2000 Ma detritus. Our research indicates that the source area for the sediments became more extensive with time. We conclude that the Chuanlinggou Formation in the Ming Tombs District was deposited in a low-energy mud flat sedimentary environment in the inter-supra tidal zone because it is mainly composed of silty mudstone and fine-grained sandstone with relatively simple sedimentary structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号