全文获取类型
收费全文 | 968篇 |
免费 | 48篇 |
国内免费 | 14篇 |
专业分类
测绘学 | 33篇 |
大气科学 | 65篇 |
地球物理 | 311篇 |
地质学 | 336篇 |
海洋学 | 63篇 |
天文学 | 155篇 |
综合类 | 5篇 |
自然地理 | 62篇 |
出版年
2023年 | 5篇 |
2022年 | 23篇 |
2021年 | 14篇 |
2020年 | 27篇 |
2019年 | 22篇 |
2018年 | 47篇 |
2017年 | 48篇 |
2016年 | 51篇 |
2015年 | 52篇 |
2014年 | 65篇 |
2013年 | 64篇 |
2012年 | 63篇 |
2011年 | 62篇 |
2010年 | 61篇 |
2009年 | 80篇 |
2008年 | 57篇 |
2007年 | 43篇 |
2006年 | 30篇 |
2005年 | 38篇 |
2004年 | 25篇 |
2003年 | 28篇 |
2002年 | 26篇 |
2001年 | 13篇 |
2000年 | 7篇 |
1999年 | 13篇 |
1998年 | 10篇 |
1997年 | 7篇 |
1996年 | 6篇 |
1995年 | 2篇 |
1994年 | 3篇 |
1992年 | 1篇 |
1990年 | 3篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 4篇 |
1983年 | 3篇 |
1982年 | 4篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1971年 | 1篇 |
1969年 | 3篇 |
排序方式: 共有1030条查询结果,搜索用时 15 毫秒
21.
Riccardo Campana Marco Feroci Ettore Del Monte Teresa Mineo Niels Lund George W. Fraser 《Experimental Astronomy》2013,36(3):451-477
The Large Observatory For X-ray Timing (LOFT), currently in an assessment phase in the framework the ESA M3 Cosmic Vision programme, is an innovative medium-class mission specifically designed to answer fundamental questions about the behaviour of matter, in the very strong gravitational and magnetic fields around compact objects and in supranuclear density conditions. Having an effective area of ~10 m2 at 8 keV, LOFT will be able to measure with high sensitivity very fast variability in the X-ray fluxes and spectra. A good knowledge of the in-orbit background environment is essential to assess the scientific performance of the mission and optimize the design of its main instrument, the Large Area Detector (LAD). In this paper the results of an extensive Geant-4 simulation of the instrumentwillbe discussed, showing the main contributions to the background and the design solutions for its reduction and control. Our results show that the current LOFT/LAD design is expected to meet its scientific requirement of a background rate equivalent to 10 mCrab in 2?30 keV, achieving about 5 mCrab in the most important 2–10 keV energy band. Moreover, simulations show an anticipated modulation of the background rate as small as 10 % over the orbital timescale. The intrinsic photonic origin of the largest background component also allows for an efficient modelling, supported by an in-flight active monitoring, allowing to predict systematic residuals significantly better than the requirement of 1 %, and actually meeting the 0.25 % science goal. 相似文献
22.
Paul A. Crowther Orsola De Marco M. J. Barlow P. J. Storey 《Astrophysics and Space Science》1996,238(1):119-123
We present a detailed, quantitative study of the standard [WC10] Wolf-Rayet central star CPD-56o 8032 based on new high resolution AAT UCLES observations and the Hillier (1990) WR standard model. Our analysis of CPD-56o 8032 gives the wind properties (T
*=34500K, lg (L/L
)=3.8, lg (M/M
a–1)=–5.4,v
=225 km s–1) and chemistry (C/He=0.5, O/He=0.1, by number), the latter suggesting an intimate relationship with the Ovi PN central stars and the PG 1159-035 objects. A comparison between the wind properties of CPD-56o 8032 and Sk-66o 40 (WN 10) indicates that low excitation, low wind velocity WR winds are common to both low mass PN central stars (WC sequence) and high mass post-LBV's (WN sequence). 相似文献
23.
Metamorphic CK carbonaceous chondrites display matrix textures that are best explained by a transient thermal event with temperatures in the 550–950 K range and durations in the order of days to years, longer than what is commonly admitted for shock events but shorter than what is required for nuclide decay. We propose that radiative heating of small carbonaceous meteoroids with perihelia close to the Sun could account for the petrological features observed in CK chondrites. Numerical thermal modeling, using favorable known NEOs orbital parameters (perihelion distances between 0.07 and 0.15 AU) and physical properties of CV and CK chondrites (albedo in the range 0.01–0.1, 25% porosity, thermal diffusivity of 0.5–1.5 W m?1 K?1), shows that radiative heating can heat carbonaceous meteoroids in the meter size range to core temperatures up to 1050 K, consistent with the metamorphic temperatures estimated for CK chondrites. Sizes of known CV and CK chondrites indicate that all these objects were small meteoroids (radii from a few cm to 2.5 m) prior to their atmospheric entry. Simulations of dynamic orbits for NEO objects suggest that there are numerous such bodies with suitable orbits and properties, even if they are only a small percentage of all NEOs. Radiative heating would be a secondary process (superimposed on parent-body processes) affecting meteoroids formed by the disruption of an initially homogeneous CV3-type parent body. Different petrologic types can be accounted for depending on the sizes and heliocentric distances of the objects in such a swarm. 相似文献
24.
In this paper, we present our study of the orbital and thermal evolutions, due to solar radiative heating, of four near-Earth asteroids (NEAs) considered as potential target candidates for sample return space missions to primitive asteroids. We used a dynamical model of the NEA population to estimate the most likely source region and orbital history of these objects. Then, for each asteroid, we integrated numerically over their entire lifetime a set of 14 initially indistinguishable orbit (clones), obtained by small variations of the nominal initial conditions. Using a thermal model, we then computed surface and sub-surface temperatures of these bodies during their dynamical history. Our aim is to determine whether these bodies are likely to have experienced high temperature level, and whether great temperature changes can be expected due to the orbital changes as well as their maximum and minimum values. Such information is important in the framework of sample return space missions whose goal is to bring back pristine materials. The knowledge of the temperature range of materials at different depth over the orbital evolution of potential targets can help defining sampling strategies that ensure the likelihood that unaltered material will be brought back. Our results suggest that for all the considered potential targets, the surface has experienced for some time temperatures greater than 400 K and at most 500 K with 50% probability. This probability drops rapidly with increasing temperature. Sub-surface materials at a depth of only 3 cm are much more protected from high temperature and generally do not reach temperatures exceeding 450 K (with 50% probability). They should thus be unaltered at this depth at least from a Sun-driven heating point of view. On the other hand, surface material for some of the considered objects can have a range of temperature which can make them less reliable as pristine materials. However, it is assumed here that the same material is constantly exposed to solar heat, while regolith turnover may occur. The latter can be caused by different processes such as seismic shaking and/or impact cratering. This would reduce the total time that materials are exposed to a certain temperature. Thus, it is very likely that a sample collected from any of the four considered targets, or any primitive NEA with similar dynamical properties, will have components that will be thermally unaltered as long as some of it comes from only 3 to 5 cm depth. Such a depth is not considered difficult to reach with some of the current designs of sampling devices. 相似文献
25.
26.
We review elemental abundances derived for planetary nebula (PN) WCcentral stars and for their nebulae. Uncertainties in the abundances of[WC] stars are still too large to enable an abundance sequenceto be constructed. In particular it is not clear why the hotter [WCE]stars have C and O abundances which are systematically lower than those oftheir supposed precursors, the [WCL] stars. This abundance differencecould be real or it may be due to unaccounted-for systematic effects inthe analyses. Hydrogen might not be present in [WC] star winds asoriginallysuggested, since broad pedestals observed at the base of nebular lines canplausibly be attributed to high velocity nebular components. It isrecommended that stellar abundance analyses should be carried out withnon-LTE model codes, although recombination line analyses can provideuseful insights. In particular, C II dielectronic recombinationlines provide a unique means to determine electron temperatures in cool[WC] star winds. We then compare the abundances found for PNe which have [WC] central starswith those that do not. Numerous abundance analyses of PNe have beenpublished, but comparisons based on non-uniform samples and methods arelikely to lack reliability. Nebular C/H ratios, which might be expected todistinguish between PNe around H-poor and H-rich stars, are rather similarfor the two groups, with only a small tendency towards larger values fornebulae around H-deficient stars. Nebular abundances should be obtainedwith photoionization models using the best-fitting non-LTE modelatmosphere for the central star as the input. Heavy-metal line blanketingstill needs to be taken into consideration when modeling the central star,as its omission can significantly affect the ionizing fluxes as well asthe abundance determinations. We discuss the discrepancies between nebularabundances derived from collisionally excited lines and thosederived from optical recombination lines, a phenomenon that may havelinks with the presence of H-deficient central stars. 相似文献
27.
The variability of ruthenium in chromite from chassignite and olivine‐phyric shergottite meteorites: New insights into the behavior of PGE and sulfur in Martian magmatic systems 下载免费PDF全文
Raphael J. Baumgartner Marco L. Fiorentini David Baratoux Ludovic Ferrière Marek Locmelis Andrew Tomkins Kerim A. Sener 《Meteoritics & planetary science》2017,52(2):333-350
The Martian meteorites comprise mantle‐derived mafic to ultramafic rocks that formed in shallow intrusions and/or lava flows. This study reports the first in situ platinum‐group element data on chromite and ulvöspinel from a series of dunitic chassignites and olivine‐phyric shergottites, determined using laser‐ablation ICP‐MS. As recent studies have shown that Ru has strongly contrasting affinities for coexisting sulfide and spinel phases, the precise in situ analysis of this element in spinel can provide important insights into the sulfide saturation history of Martian mantle‐derived melts. The new data reveal distinctive differences between the two meteorite groups. Chromite from the chassignites Northwest Africa 2737 (NWA 2737) and Chassigny contained detectable concentrations of Ru (up to ~160 ppb Ru) in solid solution, whereas chromite and ulvöspinel from the olivine‐phyric shergottites Yamato‐980459 (Y‐980459), Tissint, and Dhofar 019 displayed Ru concentrations consistently below detection limit (<42 ppb). The relatively elevated Ru signatures of chromite from the chassignites suggest a Ru‐rich (~1–4 ppb) parental melt for this meteorite group, which presumably did not experience segregation of immiscible sulfide liquids over the interval of mantle melting, melt ascent, and chromite crystallization. The relatively Ru‐depleted signature of chromite and ulvöspinel from the olivine‐phyric shergottites may be the consequence of relatively lower Ru contents (<1 ppb) in the parental melts, and/or the presence of sulfides during the crystallization of the spinel phases. The results of this study illustrate the significance of platinum‐group element in situ analysis on spinel phases to decipher the sulfide saturation history of magmatic systems. 相似文献
28.
Although W. Brunner began to weight sunspot counts (from 1926), using a method whereby larger spots were counted more than once, he compensated for the weighting by not counting enough smaller spots in order to maintain the same reduction factor (0.6) as was used by his predecessor A. Wolfer to reduce the count to R. Wolf’s original scale, so that the weighting did not have any effect on the scale of the sunspot number. In 1947, M. Waldmeier formalized the weighting (on a scale from 1 to 5) of the sunspot count made at Zurich and its auxiliary station Locarno. This explicit counting method, when followed, inflates the relative sunspot number over that which corresponds to the scale set by Wolfer (and matched by Brunner). Recounting some 60,000 sunspots on drawings from the reference station Locarno shows that the number of sunspots reported was “over counted” by \({\approx}\,44~\%\) on average, leading to an inflation (measured by an effective weight factor) in excess of 1.2 for high solar activity. In a double-blind parallel counting by the Locarno observer M. Cagnotti, we determined that Svalgaard’s count closely matches that of Cagnotti, allowing us to determine from direct observation the daily weight factor for spots since 2003 (and sporadically before). The effective total inflation turns out to have two sources: a major one (15?–?18 %) caused by weighting of spots, and a minor source (4?–?5 %) caused by the introduction of the Zürich classification of sunspot groups which increases the group count by 7?–?8 % and the relative sunspot number by about half that. We find that a simple empirical equation (depending on the activity level) fits the observed factors well, and use that fit to estimate the weighting inflation factor for each month back to the introduction of effective inflation in 1947 and thus to be able to correct for the over-counts and to reduce sunspot counting to the Wolfer method in use from 1894 onwards. 相似文献
29.
Ernst-Jan Buis Marco Beijersbergen Giuseppe Vacanti Marcos Bavdaz David Lumb 《Experimental Astronomy》2005,20(1-3):105-113
If sensitive enough, future missions for nuclear astrophysics will be a great help in understanding supernovae explosions. In contrast to coded-mask instruments, both crystal diffraction lenses and grazing angle mirrors offer a possibility to construct a sensitive instrument to detect γ-ray lines in supernovae. We report on possible implementations of grazing angle mirrors and simulations carried out to determine their performance. 相似文献
30.
The catalog of the meteorite collection of the Italian Museum of Planetary Sciences in Prato (Italy)
Marco Morelli Annarita Franza Daniela Faggi Giovanni Pratesi 《Meteoritics & planetary science》2023,58(7):945-954
For the first time, this paper presents to the planetary scientists' community the catalog of the meteorite collection preserved at the Italian Museum of Planetary Sciences (Museo Italiano di Scienze Planetarie, henceforth MISP) in Prato (Italy). Founded in 2005, MISP is a type specimen official repository approved by the Nomenclature Committee of the Meteoritical Society. It represents one of the few museums worldwide entirely devoted to planetary sciences. The catalog of its meteorite collection encompasses 430 meteorites for a total of 1536 specimens, including 291 thin sections, 184 thick sections, and 278 specimens that MISP has classified. Furthermore, MISP is currently classifying 57 other meteorites. Some samples were found during meteorite recovery expeditions in hot deserts, promoted by MISP in collaboration with diverse Italian universities and national research institutions. MISP also keeps an impact rocks collection comprising 257 samples. In a country like Italy, where most of the collected meteorites are housed in museums whose catalogs are not available online, the publication of the MISP meteorite collection catalog, together with the catalog of the impact rocks collection, represents not only a significant scientific primary source but also a remarkable tool for disseminating meteoritics to nonresearch audiences in educational activities and citizen science projects. 相似文献