首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   4篇
测绘学   1篇
地球物理   12篇
地质学   15篇
海洋学   3篇
天文学   22篇
综合类   2篇
自然地理   1篇
  2023年   2篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   4篇
  2008年   1篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  1998年   2篇
  1995年   1篇
  1992年   1篇
排序方式: 共有56条查询结果,搜索用时 46 毫秒
41.
42.
A theoretical framework for the time-dependent processes leading to the high rates of new production in eastern boundary upwelling systems has been assembled from a series of past upwelling studies. As part of the CoOP WEST (Wind Events and Shelf Transport) study, new production in the Bodega Bay upwelling area and it's control by ambient nitrate and ammonium concentrations and the advective wind regime are described. Data and analyses are focused primarily on the WEST 2001 cruise (May–June 2001) when the two legs differed greatly in wind regimes but not nutrient concentrations. Elevated concentrations of ammonium in upwelled water with high nitrate were observed in both legs. Nitrate uptake by phytoplankton as a function of nitrate concentration was linear rather than Michaelis–Menten-like, modulated by inhibitory levels of ammonium, yielding coefficients that enable the specific nitrate uptake element of new production to be estimated from nutrient concentrations. The range of specific nitrate uptake rates for the two legs of WEST 2001 were similar, essentially a physiological response to nutrient conditions. However, the low “realization” of new production i.e. incorporation of biomass as particulate nitrogen that occurred in this system compared to the theoretical maximum possible was determined by the strong advective and turbulent conditions that dominated the second leg of the WEST 2001 study. These data are compared with other upwelling areas using a physiological shift-up model [Dugdale, R.C., Wilkerson, F.P., Morel, A. 1990. Realization of new production in coastal upwelling areas: a means to compare relative performance. Limnology and Oceanography 35, 822–829].  相似文献   
43.
ABSTRACT

High-Resolution Topography (HRT) data sets are becoming increasingly available, improving our ability and opportunities to monitor geomorphic changes through multi-temporal Digital Terrain Models (DTMs). The use of repeated topographic surveys enables inferring the sediment dynamics of hazardous geomorphic processes such as floods, debris flows, and landslides, and allows us to derive important information on the risks often associated with these processes. The topographic surveying platforms, georeferencing systems, and processing tools have seen important developments in the last two decades, in particular Light Detection And Ranging (LiDAR) technology used in Airborne Laser Scanning (ALS) and Terrestrial Laser Scanning (TLS). Moreover, HRT data, produced through these techniques, changed a lot in terms of point cloud density, accuracy and precision over time. Therefore, old “legacy” data sets and recent surveys can often show comparison problems, especially when multi-temporal data are not homogeneous in terms of quality and uncertainties. In this context, data co-registration should be used to guarantee the coherence among multi-temporal surveys, minimizing, on stable areas, the distance between corresponding points acquired at different epochs. Although several studies highlight that this process is fundamental to properly compare multi-temporal DTMs, it is often not addressed in LiDAR post-processing workflows. In this paper we focus on the alignment of multi-temporal surveys in a topographically complex and rugged environment as the Moscardo debris-flow catchment (Eastern Italian Alps), testing various co-registration methods to align multi-temporal ALS point clouds (i.e. years 2003, 2009 and 2013) and the derived DTMs. In particular, we tested the pairwise registration with manual correspondences, the Iterative Closest Point (ICP) algorithm and a mathematical model that allows aligning simultaneously a generic number of point clouds, the so-called Generalized Procrustes Analysis (GPA), also in its GPA-ICP variant. Then, to correct the possible small inaccuracies generated from the gridding interpolation process, a custom-developed DTM co-registration tool (GRD-CoReg) was used to align gridded data. Both alignment phases (i.e. at point cloud and DTM level) proved to be fundamental and allowed us to obtain proper and reliable DTMs of Difference (DoDs), useful to quantify the debris mobilized and to detect the spatial and temporal patterns of catchment-scale erosion and deposition. The consistency of DoDs data was verified through the comparison between the erosion estimate of DoDs and the volumes of debris-flow events measured by the monitoring station close to the Moscardo torrent catchment outlet. The GPA-ICP algorithm followed by the GRD-CoReg tool proved to be the most effective solution for improving DoDs results with a decrease of systematic trend due to vertical and horizontal uncertainties between surveys, especially at steep slopes. The net volume difference (i.e. the sediment output from the catchment) of the 2003–2013 period changed from 3,237,896 m3 to 135,902 m3 in DoDs obtained from not co-registered and co-registered DTMs. The volume of debris flows measured at the catchment outlet during the same time interval amounts to 169,660 m3. The comparison with debris-flow volume measures at the monitoring station shows, therefore, that the DTMs obtained from the co-registration processes generate more reliable DoDs than those obtained from the raw DTMs (without the alignment).  相似文献   
44.
A dataset of 809 debris flows that occurred in 537 basins in mountainous areas of northeastern Italy between the mid-19th century and 2015 is collected and analyzed. A remarkable increase in the number of events is observed in the last four decades and is mainly ascribed to more systematic data collection. The correlation between debris-flow volume and drainage basin area is obtained assuming a power-law relationship. The exponent of the power-law curve at the 50th percentile (0.67 ± 0.02) indicates negative allometry, which means that basin area grows out of proportion to debris-flow volume. In contrast, the exponents at the 98th and 99th percentiles are close to one, implying that debris-flow volumes grow linearly with basin areas. The isometric relationship between the largest debris flows and the corresponding basin areas is due to the enhanced debris supply provided by the activation of widespread sediment sources, the extent of which is proportional to the basin size. The probability density function of debris-flow volume for a subset of the collected dataset is calculated using the kernel density estimation function, which permits estimating the probability of the occurrence of debris flows that exceed a given threshold volume. The comparison with debris flows in other hydroclimatic regions shows that, although debris-flow volumes in northeastern Italy may attain high values, they are often exceeded by debris flows that occur in seismically active regions and/or are triggered by more intense rainstorms. © 2018 John Wiley & Sons, Ltd.  相似文献   
45.
The seismic performance of integral abutment bridges (IABs) is affected by the interaction with the surrounding soil, and specifically by the development of interaction forces in the embankment-abutment and soil-piles systems. In principle, these effects could be evaluated by means of highly demanding numerical computations that, however, can be carried out only for detailed studies of specific cases. By contrast, a low-demanding analysis method is needed for a design-oriented assessment of the longitudinal seismic performance of IABs. To this purpose, the present paper describes a design technique in which the frequency- and amplitude-dependency of the soil-structure interaction is modelled in a simplified manner. Specifically, the method consists of a time-domain analysis of a simplified soil-bridge model, in which soil-structure interaction is simulated by means of distributed nonlinear springs connecting a free-field ground response analysis model to the structural system. The results of this simplified method are validated against the results of advanced numerical analyses, considering different seismic scenarios. In its present state of development, the proposed simplified nonlinear model can be used for an efficient evaluation of the longitudinal response of straight IABs and can constitute a starting point for a prospective generalisation to three-dimensional response.  相似文献   
46.
In this study, we investigate the surface flow time of rise in response to rainfall and snowmelt events at different spatial scales and the main sources originating channel runoff and spring water in a steep nested headwater catchment (Rio Vauz, Italian Dolomites), characterized by a marked elevation gradient. We monitored precipitation at different elevations and measured water stage/streamflow at the outlet of two rocky subcatchments of the same size, representative of the upper part of the catchment dominated by outcropping bedrock, at the outlet of a soil‐mantled and vegetated subcatchment of similar size but different morphology, and at the outlet of the main catchment. Hydrometric data are coupled with stable isotopes and electrical conductivity sampled from different water sources during five years, and used as tracers in end‐member mixing analysis, application of two component mixing models and analysis of the slope of the dual‐isotope regression line. Results reveal that times of rise are slightly shorter for the two rocky subcatchments, particularly for snowmelt and mixed rainfall/snowmelt events, compared to the soil‐mantled catchment and the entire Rio Vauz Catchment. The highly‐variable tracer signature of the different water sources reflects the geomorphological and geological complexity of the study area. The principal end‐members for channel runoff and spring water are identified in rainfall and snowmelt, which are the dominant water sources in the rocky upper part of the study catchment, and soil water and shallow groundwater, which play a relevant role in originating baseflow and spring water in the soil‐mantled and vegetated lower part of the catchment. Particularly, snowmelt contributes up to 64 ± 8% to spring water in the concave upper parts of the catchment and up to 62 ± 11% to channel runoff in the lower part of the catchment. These results offer new experimental evidences on how Dolomitic catchments capture and store rain water and meltwater, releasing it through a complex network of surface and subsurface flow pathways, and allow for the construction of a preliminary conceptual model on water transmission in snowmelt‐dominated catchments featuring marked elevation gradients.  相似文献   
47.
48.
In this paper, we analyse very short arcs of minor bodies of the Solar System detected on Hubble Space Telescope (HST) Wide Field Channel ACS images. In particular, we address how to constrain the Keplerian orbital elements for minor body detections, illustrating the method for two objects. One of the minor bodies left 13 successive trails, making it the most well-sampled object yet identified in the HST archive. Most interestingly, we also address the problem of ephemeris prediction and show that in the particular case of HST very short arcs the confinement window for subsequent recovery is significantly reduced to a narrow linear region, that would facilitate successive observations.  相似文献   
49.
In this paper we present new results obtained from our spectroscopic survey of near-Earth objects (called SINEO). We show a set of 36 visible and near-infrared spectra, recorded with the 3.5-m Italian Telescopio Nazionale Galileo at La Palma (Canary Island). We discuss their taxonomic classification (resulting in 25 objects belonging to the S-complex, five to the C-complex and six to the X-complex), and their overall compositional linkage with the principal source of near-Earth objects, namely the Main Belt. Moreover, for some near-Earth objects we found good spectral fit among meteorites. In particular, we achieved an excellent fit for chondrites of different clans. Finally, we discuss the influences of space weathering among small S-type near-Earth objects.  相似文献   
50.
We investigate the depth, variability, and history of regolith on asteroid Vesta using data from the Dawn spacecraft. High‐resolution (15–20 m pixel?1) Framing Camera images are used to assess the presence of morphologic indicators of a shallow regolith, including the presence of blocks in crater ejecta, spur‐and‐gully–type features in crater walls, and the retention of small (<300 m) impact craters. Such features reveal that the broad, regional heterogeneities observed on Vesta in terms of albedo and surface composition extend to the physical properties of the upper ~1 km of the surface. Regions of thin regolith are found within the Rheasilvia basin and at equatorial latitudes from ~0–90°E and ~260–360°E. Craters in these areas that appear to excavate material from beneath the regolith have more diogenitic (Rheasilvia, 0–90°E) and cumulate eucrite (260–360°E) compositions. A region of especially thick regolith, where depths generally exceed 1 km, is found from ~100–240°E and corresponds to heavily cratered, low‐albedo surface with a basaltic eucrite composition enriched in carbonaceous chondrite material. The presence of a thick regolith in this area supports the idea that this is an ancient terrain that has accumulated a larger component of exogenic debris. We find evidence for the gardening of crater ejecta toward more howarditic compositions, consistent with regolith mixing being the dominant form of “weathering” on Vesta.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号