首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   1篇
测绘学   4篇
大气科学   1篇
地球物理   5篇
地质学   21篇
天文学   11篇
综合类   1篇
自然地理   4篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2000年   3篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1978年   2篇
  1974年   1篇
  1969年   1篇
  1952年   1篇
  1947年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
21.
    
  相似文献   
22.
A Confidence Index is proposed that expresses the confidence of experts in the quality of a 3-D model as a representation of the subsurface at particular locations. The Confidence Index is based on the notion that the variation of the height of a particular geological surface represents general geological variability and local variability. The general variability comprises simple trends which allow the modeller to project surface structure at locations remote from direct observations. The local variability limits the extent to which borehole observations constrain inferences which the modeller can make concerning local fluctuations around the broad trends. The general and local geological variability of particular contacts are modelled in terms of simple trend surfaces and variogram models. These are then used to extend measures of confidence that reflect expert opinion so as to assign a confidence value to any location where a particular contact is represented in a model. The index is illustrated with an example from the East Midlands region of the United Kingdom.  相似文献   
23.
Rapidly depleting unconfined aquifers are the primary source of water for irrigation on the North China Plain. Yet, despite its critical importance, groundwater recharge to the Plain remains an enigma. We introduce a one‐dimensional soil‐water‐balance model to estimate precipitation‐ and irrigation‐generated areal recharge from commonly available crop and soil characteristics and climate data. To limit input data needs and to simplify calculations, the model assumes that water flows vertically downward under a unit gradient; infiltration and evapotranspiration are separate, sequential processes; evapotranspiration is allocated to evaporation and transpiration as a function of leaf‐area index and is limited by soil‐moisture content; and evaporation and transpiration are distributed through the soil profile as exponential functions of soil and root depth, respectively. For calibration, model‐calculated water contents of 11 soil‐depth intervals from 0 to 200 cm were compared with measured water contents of loam soil at four sites in Luancheng County, Hebei Province, over 3 years (1998–2001). Each 50‐m2 site was identically cropped with winter wheat and summer maize, but received a different irrigation treatment. Average root mean‐squared error between measured and model‐calculated water content of the top 180 cm was 4·2 cm, or 9·3% of average total water content. In addition, model‐calculated evapotranspiration compared well with that measured by a large‐scale lysimeter. To test the model, 12 additional sites were simulated successfully. Model results demonstrate that drainage from the soil profile is not a constant fraction of precipitation and irrigation inputs, but rather the fraction increases as the inputs increase. Because this drainage recharges the underlying aquifer, improving irrigation efficiency by reducing seepage will not reverse water‐table declines. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
24.
25.
In order to assess the nature, degradational processes and history of the dichotomy boundary on Mars, we conducted a detailed morphological analysis of a 70,000 km2 region of its northern portion (north-central Deuteronilus Mensae, south of Lyot, in the vicinity of Sinton Crater). This region is characterized by the distinctive sinuous ∼2 km-high plateau scarp boundary, outlying massifs to the north, and extensive fretted valleys dissecting the plateau to the south. These features represent the first-order modification and retreat of the dichotomy boundary, and are further modified by processes that form lineated valley fill (LVF) in the fretted valleys, and lobate debris aprons (LDA) along the dichotomy scarp and surrounding the outlying massifs. We use new high-resolution image and topography data to examine the nature and origin of LVF and LDA and to investigate the climatic and accompanying degradational history of the escarpment. On the basis of our analysis, we conclude that: (1) LVF and LDA deposits within the study region are comprised of the same material, show integrated flow patterns, and originate as debris-covered valley glaciers; a significant amount of ice (hundreds of meters) is likely to remain today beneath a thin cover of sublimation till. (2) There is depositional evidence to suggest glacial highstands at least 800 m above the present level, implying previous conditions in which the distribution of ice was much more widespread; this is supported by similar deposits within many other areas across the dichotomy boundary. (3) The timing of the most recent large-scale activity of the LDA/LVF in this area is about 100-500 million years ago, similar to ages reported elsewhere along the dichotomy boundary. (4) There is evidence for a secondary, but significantly limited phase of glaciation; the deposits of which are limited to the vicinity of the alcoves; similar later phases have also been reported elsewhere along the dichotomy boundary. (5) Modification of the fretted valleys of the dichotomy boundary has been substantial locally, but we find no evidence that the Amazonian glacial epochs caused retreat of the dichotomy boundary of the scale of tens to hundreds of kilometers. Our findings support the results of an analysis just to the east of the study region and of studies carried out elsewhere along the dichotomy boundary that find further evidence for the remnants of debris-covered glaciers and extensive valley glacial land systems.  相似文献   
26.
Groundwater is the primary source of potable water in southeast England. Its protection in urban environments is of paramount importance. Following a scoping study the British Geological Survey (BGS) established a project to develop an initial screening tool (IST) to assist the planning community in the assessment of the potential risk to ground and surface waters from contaminants mobilised as a consequence of redevelopment. The tool has been designed in the context of the source-pathway-receptor paradigm that informs Part IIa of the UK Environmental Protection Act (1990). Building on the work of previous screening tools and in particular ConSEPT, a BGS contaminated site evaluation and prioritisation tool, the IST incorporates significant refinements to scoring methodologies and takes the prioritisation approach into the 3-D environment. Implemented as a customised GIS application and utilising surfaces extracted from 3-D geological modelling, the tool collates and interrogates a range of geoscientific information, including contaminant scale, geological, historic land use, groundwater level and hydrogeological domain data. The IST facilitates the ranking of various proposed development scenarios through a semi-quantitative assessment of contamination potential, via a number of pollutant linkages, providing planners with reports on the type, spatial distribution and hazards associated with potential contaminant sources within their area. To achieve this, a range of evaluation factors applied to the sources, pathways and receptors are scored through a combination of spatial and attribute queries, then assessed on the basis of potential linkages. The initial research area selected for the application of the IST was the Olympic Park site, London.  相似文献   
27.
Colombian biomes are reconstructed at 45 sites from the modern period extending to the Last Glacial Maximum (LGM). The basis for our reconstruction is pollen data assigned to plant functional types and biomes at six 3000‐yr intervals. A reconstruction of modern biomes is used to check the treatment of the modern pollen data set against a map of potential vegetation. This allows the biomes reconstructed at past periods to be assessed relative to the modern situation. This process also provides a check on the a priori assignment of pollen taxa to plant functional types and biomes. For the majority of the sites, the pollen data accurately reflect the potential vegetation, even though much of the original vegetation has been transformed by agricultural practices. At 18 000 14C yr BP, a generally cool and dry environment is reflected in biome, assignments of cold mixed forests, cool evergreen forests and cool grassland–shrub; the latter extending to lower altitudes than presently recorded. This signal is strongly recorded at 15 000 and 12 000 14C yr BP, the vegetation at these times also reflecting a relatively cool and dry environment. At 9000 14C yr BP there is a shift to biomes thought to result from slightly cooler environmental conditions. This trend is reversed by 6000 14C yr BP; most sites, within a range of different environmental settings, recording a shift to more xeric biome types. There is an expansion of steppe and cool mixed‐forest biomes, replacing tropical dry forest and cool grassland–shrub biomes, respectively. These changes in biome assignments from the modern situation can be interpreted as a biotic response to mid‐Holocene climatic aridity. At 3000 14C yr BP the shift is mainly to biomes characteristic of slightly more mesic environmental conditions. There are a number of sites that do not change biome assignment relative to the modern reconstruction, although the affinities that these sites have to a specific biome do change. These ‘anomalies’ are interpreted on a site‐by‐site basis. Spatially constant, but differential response of the vegetation to climatic shifts are related to changes in moisture sources and the importance of edaphic controls on the vegetation. The Late Quaternary reconstruction of large‐scale vegetation dynamics in Colombia allows an understanding of the environmental controls on these to be developed. In particular, shifts in the character of the main climatic systems that influence Colombian vegetation are described. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
28.
Because the traditional Soil Conservation Service curve‐number (SCS‐CN) approach continues to be used ubiquitously in water quality models, new application methods are needed that are consistent with variable source area (VSA) hydrological processes in the landscape. We developed and tested a distributed approach for applying the traditional SCS‐CN equation to watersheds where VSA hydrology is a dominant process. Predicting the location of source areas is important for watershed planning because restricting potentially polluting activities from runoff source areas is fundamental to controlling non‐point‐source pollution. The method presented here used the traditional SCS‐CN approach to predict runoff volume and spatial extent of saturated areas and a topographic index, like that used in TOPMODEL, to distribute runoff source areas through watersheds. The resulting distributed CN–VSA method was applied to two subwatersheds of the Delaware basin in the Catskill Mountains region of New York State and one watershed in south‐eastern Australia to produce runoff‐probability maps. Observed saturated area locations in the watersheds agreed with the distributed CN–VSA method. Results showed good agreement with those obtained from the previously validated soil moisture routing (SMR) model. When compared with the traditional SCS‐CN method, the distributed CN–VSA method predicted a similar total volume of runoff, but vastly different locations of runoff generation. Thus, the distributed CN–VSA approach provides a physically based method that is simple enough to be incorporated into water quality models, and other tools that currently use the traditional SCS–CN method, while still adhering to the principles of VSA hydrology. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
29.
Abstract— An impact crater 26.8 km in diameter, located in the northern lowlands (70.32°N, 266.45°E) at the base of the flanking slopes of the shield volcano Alba Patera, is characterized by highly unusual deposits on its southeastern floor and interior walls and on its southeastern rim. These include multiple generations of distinctive arcuate ridges about 115–240 m in width and lobate deposits extending down the crater wall and across the crater floor, forming a broad, claw‐like, ridged deposit around the central peak. Unusual deposits on the eastern and southeastern crater rim include frost, dunes, and a single distal arcuate ridge. Based on their morphology and geometric relationships, and terrestrial analogs from the Mars‐like Antarctic Dry Valleys, the floor ridges are interpreted to represent drop moraines, remnants of the previous accumulation of snow and ice, and formation of cold‐based glaciers on the crater rim. The configuration and superposition of the ridges indicate that the accumulated snow and ice formed glaciers that flowed down into the crater and across the crater floor, stabilized, covering an area of about 150 km2 produced multiple individual drop moraines due to fluctuation in the position of the stable glacier front. Superposition of a thin mantle and textures attributed to a recent ice‐age period (?0.5–2 Myr ago) suggest that the glacial deposits date to at least 4–10 Myr before the present. At least five phases of advance and retreat are indicated by the stratigraphic relationships, and these may be related to obliquity excursions. These deposits are in contrast to other ice‐related modification and degradation processes typical of craters in the northern lowlands, and may be related to the distinctive position of this crater in the past atmospheric circulation pattern, leading to sufficient preferential local accumulation of snow and ice to cause glacial flow.  相似文献   
30.
Norwegian funded REDD+ projects in Tanzania have attracted a lot of attention, as has the wider REDD+ policy that aims to reduce deforestation and degradation and enhance carbon storage in forests of the developing countries. One of these REDD+ projects, managed by WWF Tanzania, was criticised in a scientific paper published in GEC, and consequently in the global media, for being linked to attempted evictions of communities living in the Rufiji delta mangroves by the Government of Tanzania, allegedly to make the area ‘ready for REDD’. In this response, we show how this eviction event in Rufiji mangroves has a history stretching back over 100 years, has nothing to do with REDD+ or any policy changes by government, and is not in any way linked to the work of any WWF project in Tanzania. We also outline some of the broader challenges faced by REDD+ in Tanzania.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号