首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   7篇
测绘学   4篇
大气科学   4篇
地球物理   23篇
地质学   44篇
海洋学   7篇
天文学   32篇
综合类   1篇
自然地理   10篇
  2023年   2篇
  2022年   2篇
  2020年   8篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   6篇
  2015年   6篇
  2014年   4篇
  2013年   8篇
  2012年   4篇
  2011年   7篇
  2010年   11篇
  2009年   10篇
  2008年   4篇
  2007年   6篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1997年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1985年   2篇
  1982年   2篇
  1980年   3篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1970年   1篇
排序方式: 共有125条查询结果,搜索用时 31 毫秒
31.
The availability of hourly air relative humidity (HARH) data is a key requirement for the estimation of epidemic dynamics of plant fungal pathogens, in particular for the simulation of both the germination of the spores and the infection process. Most of the existing epidemic forecasting models require these data as input directly or indirectly, in the latter case for the estimation of leaf wetness duration. In many cases, HARH must be generated because it is not available in historical series and when there is the need to simulate epidemics either on a wide scale or with different climate scenarios. Thirteen modelling solutions (MS) for the generation of this variable were evaluated, with different input requirements and alternative approaches, on a large dataset including several sites and years. A composite indicator was developed using fuzzy logic to compare and to evaluate the performances of the models. The indicator consists of four modules: Accuracy, Correlation, Pattern and Robustness. Results showed that when available, daily maximum and minimum air relative humidity data substantially improved the estimation of HARH. When such data are not available, the choice of the MS is crucial, given the difference in predicting skills obtained during the analysis, which allowed a clear detection of the best performing MS. This study represents the first step of the creation of a robust modelling chain coupling the MS for the generation of HARH and disease forecasting models, including the systematic validation of each step of the simulation.  相似文献   
32.
ABSTRACT

Data on land use and land cover (LULC) are a vital input for policy-relevant research, such as modelling of the human population, socioeconomic activities, transportation, environment, and their interactions. In Europe, CORINE Land Cover has been the only data set covering the entire continent consistently, but with rather limited spatial detail. Other data sets have provided much better detail, but either have covered only a fraction of Europe (e.g. Urban Atlas) or have been thematically restricted (e.g. Copernicus High Resolution Layers). In this study, we processed and combined diverse LULC data to create a harmonised, ready-to-use map covering 41 countries. By doing so, we increased the spatial detail (from 25 to one hectare) and the thematic detail (by seven additional LULC classes) compared to the CORINE Land Cover. Importantly, we decomposed the class ‘Industrial and commercial units’ into ‘Production facilities’, ‘Commercial/service facilities’ and ‘Public facilities’ using machine learning to exploit a large database of points of interest. The overall accuracy of this thematic breakdown was 74%, despite the confusion between the production and commercial land uses, often attributable to noisy training data or mixed land uses. Lessons learnt from this exercise are discussed, and further research direction is proposed.  相似文献   
33.
Fifty-seven Antarctic marine bacteria were examined for their ability to degrade commercial diesel oil as the sole organic substrate at both 4 °C and 20 °C. Based on the preliminary screening, two isolates (B11 and B15) with high capacity to degrade diesel oil were selected and their biodegradation efficiency was quantified by gas chromatographic analysis. As expected for psychrotrophs, diesel oil biodegradation was slower at 4 °C than at 20 °C. The two strains also mineralized the C28 n-paraffin octacosane at 20 °C and polychlorinated biphenyls (PCBs) at 4 °C and 20 °C.  相似文献   
34.
A better understanding of genesis and palaeoenvironmental setting of the Scisti silicei Formation (Lagonegro units, southern Italy) was achieved by means of geochemical analysis integrated with new stratigraphic information. Data show that major and trace element geochemistry of ancient clay-rich beds and banded cherts add new insights into the Mesozoic evolution of the Lagonegro basin. Sedimentary contributions to Jurassic shales sampled during this study were mainly derived from two major sources: (i) a dominant terrigenous fine-grained component, having affinity with average upper continental crust that had not undergone intense weathering and (ii) biogenic siliceous material. The latter component occurs in clay-rich layers from the “basal member” of the Scisti silicei Formation.

Composition varies up section and accounts for changes in the detrital supply due to bathymetric oscillations. The compositional variations from the basal to the overlying member are consistent with a distal source passing in time to a more “proximal” source, as indicated by sharp changes in the concentrations of detrital elements (Ti, Zr and Nb). It is likely that increased detrital input occurred through turbidity current deposition. Finally, the chemical features of the clay-rich layers from the upper cherty portion of the studied succession imply a progressive deepening of the basin.

The lack of any mafic and hydrothermal contributions in the Jurassic shales as well as the continental nature of detrital input suggests that the Lagonegro basin was located between two carbonate platforms, in accordance with the classical restoration of the African–Apulian palaeomargin. Thus, the basin acted as a preferential sink connected to the African cratonic areas through a southern entry point.  相似文献   

35.
36.
Natural Hazards - Dust storms are a major natural hazard to human health. Severe erosive storms in parts of the Central Plateau of Iran have made the situation very difficult for the inhabitants,...  相似文献   
37.
A banded amphibolite sequence of alternating ultramafic, mafic (amphibolite) and silicic layers, tectonically enclosed within Variscan migmatites, outcrops at Monte Plebi (NE Sardinia) and shows similarities with leptyno-amphibolite complexes. The ultramafic layers consist of amphibole (75–98%), garnet (0–20%), opaque minerals (1–5%) and biotite (0–3%). The mafic rocks are made up of amphibole (65–80%), plagioclase (15–30%), quartz (0–15%), opaque minerals (2–3%) and biotite (0–2%). The silicic layers consist of plagioclase (60–75%), amphibole (15–30%) and quartz (10–15%). Alteration, metasomatic, metamorphic and hydrothermal processes did not significantly modify the original protolith chemistry, as proved by a lack of K2O-enrichment, Rb-enrichment, CaO-depletion, MgO-depletion and by no shift in the rare earth element (REE) patterns. Field, geochemical and isotopic data suggest that ultramafic, mafic and silicic layers represent repeated sequences of cumulates, basic and acidic rocks similar to macrorhythmic units of mafic silicic layered intrusions. The ultramafic layers recall the evolved cumulates of Skaergaard and Pleasant Bay mafic silicic layered intrusions. Mafic layers resemble Thingmuli tholeiites and chilled Pleasant Bay mafic rocks. Silicic layers with Na2O: 4–6 wt%, SiO2: 67–71 wt% were likely oligoclase-rich adcumulates common in many mafic silicic layered intrusions. Some amphibolite showing a strong Ti-, P-depletion and REE-depletion are interpreted as early cumulates nearly devoid of ilmenite and phosphates. All Monte Plebi rocks have extremely low Nb, Ta, Zr, Hf content and high LILE/HFSE ratios, a feature inherited from the original mantle sources. The mafic and ultramafic layers show slight and strong LREE enrichment respectively. Most mafic layer samples plot in the field of continental tholeiites in the TiO2–K2O–P2O5 diagram and are completely different from N-MORB, E-MORB and T-MORB as regards REE patterns and Nd, Sr isotope ratios but show analogies with Siberian, Deccan and proto-Atlantic rift tholeiites. Comparisons with Thingmuli, Skaergaard and Kiglapait rocks and with experimental data suggest that the Monte Plebi intrusion was an open-to-oxygen system with fO2 FMQ. Mafic and ultramafic samples yielded Nd(460)=+0.79 /+3.06 and 87Sr/86Sr=0.702934–0.703426, and four silicic samples Nd(460)=–0.53/–1.13; 87Sr/86Sr=0.703239–0.703653. Significant differences in Nd isotope ratios between mafic and silicic rocks prove that both groups evolved separately in deeper magma chambers, from different mantle sources, with negligible interaction with crustal material, and were later repeatedly injected within a shallower magma chamber. The spectrum of Sr and Nd isotope data is consistent with a slightly enriched mantle metasomatized during an event earlier than 460 Ma. The metasomatising component was represented by alkali-Th-rich fluids of crustal origin rather than by sedimentary materials, able to modify alkali and Sr–Nd isotope systematics. Monte Plebi layered amphibolites might represent the first example of a strongly metamorphosed fragment of an early Paleozoic mafic silicic layered intrusion emplaced in a thinning continental crust and then tectonically dismembered by Variscan orogeny.  相似文献   
38.
39.
The Growth of the Planetary Boundary Layer at a Coastal Site: a Case Study   总被引:2,自引:1,他引:1  
A lidar system is used to determine the diurnal evolution of the planetary boundary layer (PBL) height on a summer day characterized by anticyclonic conditions. The site is located some 15 km distant from the sea, on a peninsula in south-east Italy. Contrary to expectations, the PBL height, after an initial growth consequent to sunrise, ceases to increase about 2 h before noon and then decreases and stabilizes in the afternoon. An interpretation of such anomalous behaviour is provided in terms of trajectories of air parcels towards the lidar site, which are influenced by the sea breeze, leading to a transition from a continental boundary layer to a coastal internal boundary layer. The results are analyzed using mesoscale numerical model simulations and a simple model that allows for a more direct interpretation of experimental results.  相似文献   
40.
Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric ??target?? concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the projected concentration pathways of aerosol in the next decades control the evolution of surface ocean biogeochemistry in the second half of this century more than the specific pathways of atmospheric CO2 concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号