首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7042篇
  免费   363篇
  国内免费   52篇
测绘学   205篇
大气科学   547篇
地球物理   2542篇
地质学   2371篇
海洋学   497篇
天文学   914篇
综合类   40篇
自然地理   341篇
  2022年   51篇
  2021年   138篇
  2020年   138篇
  2019年   105篇
  2018年   274篇
  2017年   281篇
  2016年   412篇
  2015年   314篇
  2014年   366篇
  2013年   515篇
  2012年   419篇
  2011年   407篇
  2010年   340篇
  2009年   357篇
  2008年   285篇
  2007年   251篇
  2006年   221篇
  2005年   180篇
  2004年   197篇
  2003年   153篇
  2002年   122篇
  2001年   126篇
  2000年   88篇
  1999年   78篇
  1998年   100篇
  1997年   87篇
  1996年   60篇
  1995年   58篇
  1994年   68篇
  1993年   52篇
  1992年   53篇
  1991年   59篇
  1990年   66篇
  1989年   50篇
  1988年   38篇
  1987年   43篇
  1986年   47篇
  1985年   36篇
  1984年   57篇
  1983年   48篇
  1982年   47篇
  1981年   34篇
  1979年   38篇
  1978年   36篇
  1977年   34篇
  1976年   34篇
  1975年   39篇
  1974年   42篇
  1973年   43篇
  1971年   43篇
排序方式: 共有7457条查询结果,搜索用时 461 毫秒
991.
Madagascar has one of the highest poverty rates in the world and consequently the long-term monitoring of groundwater resources is not a priority for the authorities. However, groundwater is often the only sustainable resource that has a satisfactory quality to supply the population. This is especially true in the south-west of the country, which is a semi-arid region and a global change hot spot (intense land use and climate changes). In response to the lack of data, the Groundwater Resource Observatory for Southwestern Madagascar (GROSoM) was established to monitor piezometry and meteorology over the longer term as part of a humanitarian response. The first site was setup in 2014 in a catchment located over a carbonate plateau; in 2018, a second site was installed in an alluvial setting within a crystalline basement catchment and a third site will be installed in 2020 to monitor groundwater dynamics in a coastal setting. The three sites, located between Toliara and Taolagnaro cities, are complementary and representative of various hydrogeological systems in Southwestern Madagascar. Each site includes a weather station and between 3 and 6 piezometric probes. The monitoring data indicate a strong inter-annual variability in precipitation, which induces a strong variability in aquifers recharge. One of the driest years in 2016 seems to be consistent with strong El Niño – Southern Oscillation (ENSO) effects observed at the global scale, while years with higher recharge appear to be related to cyclones such as Fundi in 2015 and Eketsang in 2019. Preliminary results of cross-disciplinary studies demonstrated a link between groundwater and health issues (i.e., admissions to basic health centres). This observatory aims to produce long-term data and has two objectives: (i) strengthening the early warning system for humanitarian crises in Madagascar; (ii) contributing to a better understanding of the effects of climate change on groundwater resources in this semi-arid region.  相似文献   
992.
Snow is Earth's most climatically sensitive land cover type. Traditional snow metrics may not be able to adequately capture the changing nature of snow cover. For example, April 1 snow water equivalent (SWE) has been an effective index for streamflow forecasting, but it cannot express the effects of midwinter melt events, now expected in warming snow climates, nor can we assume that station-based measurements will be representative of snow conditions in future decades. Remote sensing and climate model data provide capacity for a suite of multi-use snow metrics from local to global scales. Such indicators need to be simple enough to “tell the story” of snowpack changes over space and time, but not overly simplistic or overly complicated in their interpretation. We describe a suite of spatially explicit, multi-temporal snow metrics based on global satellite data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and downscaled climate model output for the U.S. We describe and provide examples for Snow Cover Frequency (SCF), Snow Disappearance Date (SDD), At-Risk Snow (ARS), and Frequency of a Warm Winter (FWW). Using these retrospective and prospective snow metrics, we assess the current and future snow-related conditions in three hydroclimatically different U.S. watersheds: the Truckee, Colorado Headwaters, and Upper Connecticut. In the two western U.S. watersheds, SCF and SDD show greater sensitivity to annual differences in snow cover compared with data from the ground-based Snow Telemetry (SNOTEL) network. The eastern U.S. watershed does not have a ground-based network of data, so these MODIS-derived metrics provide uniquely valuable snow information. The ARS and FWW metrics show that the Truckee Watershed is highly vulnerable to conversion from snowfall to rainfall (ARS) and midwinter melt events (FWW) throughout the seasonal snow zone. In comparison, the Colorado Headwaters and Upper Connecticut Watersheds are colder and much less vulnerable through mid- and late-century.  相似文献   
993.
A new method for the extraction of chlorinated solvents (CSs) from porewater with dimethylacetamide (DMA) used as a solvent and the determination of δ13C by gas chromatography-isotope ratio mass spectrometry (GC-IRMS) with solid-phase microextraction (SPME) are presented. This method was used for the determination of δ13C of chloroethenes and chloromethanes. The extraction of the CSs from porewater with DMA led to a minimal loss of mass of solvent and chlorinated compounds. The accuracy of the method was verified with the analysis of the pure injected compounds using elemental analyzer—isotope ratio mass spectrometry (EA-IRMS). It has been effectively applied in a study area in saturated soil samples of a pollutant source zone of perchloroethylene (PCE) and trichloroethylene (TCE). The limit of quantification of the new method was 0.034 μg/g for PCE and TCE for 10–20 g of soil sample. This new method allows for compound-specific isotope analysis of CSs in porewater, which can be beneficial in sites where the identification of contamination sources and the behavior of the contaminants are not clear.  相似文献   
994.
Journal of Seismology - A three-dimensional tomographic image of the seismic velocity structure in the crust and upper mantle of northwestern Nicaragua was performed using the back-projection...  相似文献   
995.
Planetary nebulae (PNe) are formed in a very fast process. In just about 1000 years, the nebula evolves from a spherical and slowly expanding AGB envelope to a PN, with usually axial symmetry and high axial velocities. Molecular lines are known to probe most of the nebular material in young PNe and protoplanetary nebulae (PPNe), and are therefore very useful to study such an impressive evolution. Many quantitative results on these objects have been so obtained, including general structure, total mass and density distribution, kinetic temperatures, velocity fields, etc. Existing observations probe both the gas accelerated by post-AGB shocks and the quiescent components. But the study of crucial regions to understand PN formation (recently shocked shells, regions heated by the stellar UV and inner rotating disks) requires observations at higher frequency and with better spatial resolution.   相似文献   
996.
Pulsating structures recorded at 237 MHz that are associated to decimetric continuum enhancement during the September 9, 2001 solar radio burst are described. We analyzed the radiopolarimetric data recorded at the Trieste Solar Radio System (INAF—Trieste Astronomical Observatory—Basovizza Observing Station) with very high time resolution (1 ms) at metric frequencies. Two different types of pulsations that occur in about 4 minutes at the same frequency are described. The possible mechanisms are analyzed and some parameters of the associated magnetic structure are estimated.  相似文献   
997.
998.
By using high-resolution, low-scan-rate, all-sky CCD cameras, the SPanish Meteor Network (SPMN) is currently monitoring meteor and fireball activity on a year round basis. Here are presented just a sampling of the accurate trajectory, radiant and orbital data obtained for meteors imaged simultaneously from two SPMN stations during the continuous 2006–2007 coverage of meteor and fireball monitoring. Typical astrometric uncertainty is 1–2 arc min, while velocity determination errors are of the order of 0.1–0.5 km/s, which is dependent on the distance of each event to the station and its particular viewing geometry. The cameras have demonstrated excellent performance for detecting meteor outbursts. The recent development of automatic detection software is also providing real-time information on the global meteor activity. Finally, some examples of the all-sky CCD cameras applications for detecting unexpected meteor activity are given.  相似文献   
999.
On December 20, 2004 the Minor Planet Center issued the Minor Planet Electronic Circular (MPEC) 2004-Y25 announcing the discovery of a new Near Earth Asteroid (NEA) with designation 2004 MN4. Only two days later, when the Christmas holidays were about to begin, it was already apparent that this asteroid, currently known as Apophis, would be notorious: our close-approach monitoring system, CLOMON2, was already showing a Virtual Impactor (VI) in 2029 reaching the level 2 in the Torino Scale, the first asteroid to reach that level since our monitoring system had been operational. However, this was just the beginning of what it was to come in the subsequent days. In this paper we will give an overview of the NEODyS-CLOMON2 system and provide the details on how Apophis’ collision scenario evolved, the way NEODyS’ team handled it and the crazy 2004’ Christmas holidays we had due to this unexpected guest.  相似文献   
1000.
We derive the equations for the gravity assist manoeuvre in the general 2D case without the constraints of circular planetary orbits or widely different masses as assumed by Broucke (AIAA/AAS 1988) and obtain the slingshot conditions and maximum energy gain for arbitrary mass ratios of two colliding rigid bodies. Using the geometric view developed in an earlier paper by the authors (Rica da Silva, A., Lemos, J.P.S.: Am. J. Phys. 74, 584–590, 2006) the possible trajectories are computed for both attractive or repulsive interactions yielding a further insight on the slingshot mechanics and its parametrization. . The general slingshot manoeuvre for arbitrary masses is explained as a particular case of the possible outcomes of attractive or repulsive binary collisions, and the correlation between asymptotic information and orbital parameters is obtained in general.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号