排序方式: 共有50条查询结果,搜索用时 15 毫秒
31.
George D. Manolis Tsviatko V. Rangelov 《Soil Dynamics and Earthquake Engineering》2006,26(10):952-959
Geological media are invariably non-homogeneous, which complicates considerably the analysis of seismically induced wave propagation phenomena. Thus, closed-form solutions in the form of Green's functions are difficult to construct, but are quite valuable in their own right and often play the role of kernels in boundary integral equation formulations that are used for the solution of complex boundary-value problems of engineering importance. In this work, we examine in some detail the types of wave-like equations that result from vector decomposition of the equations of motion for the infinitely extending non-homogeneous continuum, which would be a first step for evaluating Green's functions. Specifically, an eigenvalue analysis is first performed, followed by computations using the finite difference method for a specific example involving a soil layer with quadratically varying material parameters. The aforementioned wave-like equations, defined in terms of dilatational and rotational strains, are originally coupled. Their uncoupling involves use of algebraic transformations, which are in turn valid for certain restricted categories of non-homogeneous materials. Numerical solution of these equations clearly shows attenuation patterns and phase changes that are manifested as the incoming wave disturbance is continuously scattered by non-constant material stiffness values encountered along the propagation path. 相似文献
32.
33.
In this work, a hybrid boundary integral equation method (BIEM) is developed, based on both displacement and hypersingular traction formulations, for the analysis of time-harmonic seismic waves propagating through cracked, multi-layered geological regions with surface topography and under plane strain conditions. Specifically, the displacement-based BIEM is used for a multi-layered deposit with interface cracks, while the regularized, traction-based BIEM is used when internal cracks are present within the layers. The standard uni-dimensional boundary element with parabolic shape functions is employed for discretizing the free surface and the layer interfaces, while special discontinuous boundary elements are placed near the crack tips to model the asymptotic behaviour of both displacements and tractions. This formulation yields displacement amplitudes and phase angles on the free surface of a geological deposit, as well as stress intensity factors near the tips of the cracks. Finally, in the companion paper, numerical results are presented which show that both scattered wave and stress concentration fields are sensitive to the incidence seismic wave parameters and to specific site conditions such as surface topography, layering, the presence of cracks and crack interaction. 相似文献
34.
Sung-Hong Park Jordan A. Guerra Peter T. Gallagher Manolis K. Georgoulis D. Shaun Bloomfield 《Solar physics》2018,293(8):114
Solar active regions (ARs) that produce major flares typically exhibit strong plasma shear flows around photospheric magnetic polarity inversion lines (MPILs). It is therefore important to quantitatively measure such photospheric shear flows in ARs for a better understanding of their relation to flare occurrence. Photospheric flow fields were determined by applying the Differential Affine Velocity Estimator for Vector Magnetograms (DAVE4VM) method to a large data set of 2548 coaligned pairs of AR vector magnetograms with 12-min separation over the period 2012?–?2016. From each AR flow-field map, three shear-flow parameters were derived corresponding to the mean (\(\langle S\rangle \)), maximum (\(S_{\mathrm{max}}\)) and integral (\(S_{\mathrm{sum}}\)) shear-flow speeds along strong-gradient, strong-field MPIL segments. We calculated flaring rates within 24 h as a function of each shear-flow parameter and we investigated the relation between the parameters and the waiting time (\(\tau \)) until the next major flare (class M1.0 or above) after the parameter observation. In general, it is found that the larger \(S_{\mathrm{sum}}\) an AR has, the more likely it is for the AR to produce flares within 24 h. It is also found that among ARs which produce major flares, if one has a larger value of \(S_{\mathrm{sum}}\) then \(\tau \) generally gets shorter. These results suggest that large ARs with widespread and/or strong shear flows along MPILs tend to not only be more flare productive, but also produce major flares within 24 h or less. 相似文献
35.
Konstantinos Bischiniotis Bart van den Hurk Ervin Zsoter Erin Coughlan de Perez Manolis Grillakis Jeroen C. J. H. Aerts 《水文科学杂志》2013,58(10):1171-1189
ABSTRACTFlood early warning systems play a more substantial role in risk mitigation than ever before. Hydrological forecasts, which are an essential part of these systems, are used to trigger action against floods around the world. This research presents an evaluation framework, where the skills of the Global Flood Awareness System (GloFAS) are assessed in Peru for the years 2009–2015. Simulated GloFAS discharges are compared against observed ones for 10 river gauges. Forecasts skills are assessed from two perspectives: (i) by calculating verification scores at every river section against simulated discharges and (ii) by comparing the flood signals against reported events. On average, river sections with higher discharges and larger upstream areas perform better. Raw forecasts provide correct flood signals for 82% of the reported floods, but exhibit low verification scores. Post-processing of raw forecasts improves most verification scores, but reduces the percentage of the correctly forecasted reported events to 65%. 相似文献
36.
Daniel Moraetis Fotini Stamati Manolis Kotronakis Tasoula Fragia Nikolaos Paranychnianakis Nikolaos P. Nikolaidis 《Applied Geochemistry》2011
Koiliaris River watershed is a Critical Zone Observatory that represents severely degraded soils due to intensive agricultural activities and biophysical factors. It has typical Mediterranean soils under the imminent threat of desertification which is expected to intensify due to projected climate change. High frequency hydro-chemical monitoring with targeted sampling for Rare Earth Elements (REE) analysis of different water bodies and geochemical characterization of soils were used for the identification of hydrologic and geochemical pathways. The high frequency monitoring of water chemical data highlighted the chemical alterations of water in Koiliaris River during flash flood events. Soil physical and chemical characterization surveys were used to identify erodibility patterns within the watershed and the influence of soils on surface and ground water chemistry. The methodology presented can be used to identify the impacts of degraded soils to surface and ground water quality as well as in the design of methods to minimize the impacts of land use practices. 相似文献
37.
Evaluation of atmospheric transport as a nonpoint source of polycyclic aromatic hydrocarbons in marine sediments of the Eastern Mediterranean 总被引:1,自引:0,他引:1
Coastal marine sediment, air and seawater samples were collected at six sampling stations in the Eastern Mediterranean Sea distant from pollutant point sources. All sediment samples were analyzed to determine polycyclic aromatic hydrocarbon (PAH), black carbon (BC) and organic carbon (OC) contents. The PAH contents of gaseous and seawater samples of the study were determined in order to evaluate the role of air–sea exchange as PAH nonpoint source to the marine sediments. The average concentration of the total PAHs (∑PAHs) in the sediments varied from 2.2 to 1056.2 ng g−1 dry weight. The average BC and OC contents varied from 0.3 to 5.6 and from 2.9 to 21.4 mg g−1 dry weight, respectively. ∑PAH concentration in the marine atmosphere varied from 20.0 to 83.2 ng m−3. Air–water exchange flux (FA–W) estimation has indicated air transport as a significant source of PAHs to pristine marine sediments of Eastern Mediterranean. In addition, the significant correlation between the PAHs and the organic and soot carbon content further suggests the importance of atmospheric input of PAHs to the sediments. 相似文献
38.
George D. Manolis Richard P. Shaw Stavros Pavlou 《Soil Dynamics and Earthquake Engineering》1999,18(1):952
The purpose of this work is to present three methods of analysis for elastic waves propagating in two dimensional, elastic nonhomogeneous media. The first step, common to all methods, is a transformation of the governing equations of motion so that derivatives with respect to the material parameters no longer appear in the differential operator. This procedure, however, restricts analysis to a very specific class of nonhomogeneous media, namely those for which Poisson's ratio is equal to 0.25 and the elastic parameters are quadratic functions of position. Subsequently, fundamental solutions are evaluated by: (i) conformal mapping in conjunction with wave decomposition, which in principle allows for both vertical and lateral heterogeneities; (ii) wave decomposition into pseudo-dilatational and pseudo-rotational components, which results in an Euler-type equation for the transformed solution if medium heterogeneity is a function of one coordinate only; and (iii) Fourier transformation followed by a first order differential equation system solution, where the final step involving inverse transformation from the wavenumber domain is accomplished numerically. Finally, in the companion paper numerical examples serve to illustrate the above methodologies and to delineate their range of applicability. 相似文献
39.
40.
Robert Barouki Manolis Kogevinas Karine Audouze Kristine Belesova Ake Bergman Linda Birnbaum Sandra Boekhold Sebastien Denys Celine Desseille Elina Drakvik Howard Frumkin Jeanne Garric Delphine Destoumieux-Garzon Andrew Haines Anke Huss Genon Jensen Spyros Karakitsios Jana Klanova Iida-Maria Koskela Francine Laden Paolo Vineis 《Chemie der Erde / Geochemistry》2010
The outbreak of COVID-19 raised numerous questions on the interactions between the occurrence of new infections, the environment, climate and health. The European Union requested the H2020 HERA project which aims at setting priorities in research on environment, climate and health, to identify relevant research needs regarding Covid-19. The emergence and spread of SARS-CoV-2 appears to be related to urbanization, habitat destruction, live animal trade, intensive livestock farming and global travel. The contribution of climate and air pollution requires additional studies. Importantly, the severity of COVID-19 depends on the interactions between the viral infection, ageing and chronic diseases such as metabolic, respiratory and cardiovascular diseases and obesity which are themselves influenced by environmental stressors. The mechanisms of these interactions deserve additional scrutiny. Both the pandemic and the social response to the disease have elicited an array of behavioural and societal changes that may remain long after the pandemic and that may have long term health effects including on mental health. Recovery plans are currently being discussed or implemented and the environmental and health impacts of those plans are not clearly foreseen. Clearly, COVID-19 will have a long-lasting impact on the environmental health field and will open new research perspectives and policy needs. 相似文献