首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   349篇
  免费   16篇
  国内免费   2篇
测绘学   17篇
大气科学   37篇
地球物理   72篇
地质学   151篇
海洋学   15篇
天文学   45篇
综合类   3篇
自然地理   27篇
  2022年   3篇
  2019年   3篇
  2018年   4篇
  2017年   9篇
  2016年   7篇
  2015年   6篇
  2014年   12篇
  2013年   17篇
  2012年   12篇
  2011年   15篇
  2010年   21篇
  2009年   14篇
  2008年   11篇
  2007年   9篇
  2006年   12篇
  2005年   7篇
  2004年   13篇
  2003年   13篇
  2002年   8篇
  2001年   9篇
  2000年   3篇
  1999年   8篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1994年   6篇
  1993年   8篇
  1992年   5篇
  1991年   5篇
  1990年   3篇
  1987年   5篇
  1986年   4篇
  1985年   7篇
  1984年   14篇
  1983年   8篇
  1982年   8篇
  1981年   6篇
  1980年   4篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1975年   7篇
  1974年   3篇
  1972年   2篇
  1968年   5篇
  1967年   2篇
  1966年   3篇
  1964年   2篇
  1937年   2篇
排序方式: 共有367条查询结果,搜索用时 15 毫秒
61.
The Andes Cordillera acts as regional ??Water Towers?? for several countries and encompasses a wide range of ecosystems and climates. Several hydroclimatic changes have been described for portions of the Andes during recent years, including glacier retreat, negative precipitation trends, an elevation rise in the 0° isotherm, and changes in regional streamflow regimes. The Temperate-Mediterranean transition (TMT) zone of the Andes (35.5°?C39.5°S) is particularly at risk to climate change because it is a biodiversity hotspot with heavy human population pressure on water resources. In this paper we utilize a new tree-ring network of Austrocedrus chilensis to reconstruct past variations in regional moisture in the TMT of the Andes by means of the Palmer Drought Severity Index (PDSI). The reconstruction covers the past 657?years and captures interannual to decadal scales of variability in late spring?Cearly summer PDSI. These changes are related to the north?Csouth oscillations in moisture conditions between the Mediterranean and Temperate climates of the Andes as a consequence of the latitudinal position of the storm tracks forced by large-scale circulation modes. Kernel estimation of occurrence rates reveals an unprecedented increment of severe and extreme drought events during the last century in the context of the previous six centuries. Moisture conditions in our study region are linked to tropical and high-latitude ocean-atmospheric forcing, with PDSI positively related to Ni?o-3.4 SST during spring and strongly negatively correlated with the Antarctic Oscillation (AAO) during summer. Geopotential anomaly maps at 500-hPa show that extreme dry years are tightly associated with negative height anomalies in the Ross?CAmundsen Seas, in concordance with the strong negative relationship between PDSI and AAO. The twentieth century increase in extreme drought events in the TMT may not be related to ENSO but to the positive AAO trend during late-spring and summer resulting from a gradual poleward shift of the mid-latitude storm tracks. This first PDSI reconstruction for South America demonstrates the highly significant hindcast skill of A. chilensis as an aridity proxy.  相似文献   
62.
Proxy reconstructions of precipitation from central India, north-central China, and southern Vietnam reveal a series of monsoon droughts during the mid 14th–15th centuries that each lasted for several years to decades. These monsoon megadroughts have no analog during the instrumental period. They occurred in the context of widespread thermal and hydrologic climate anomalies marking the onset of the Little Ice Age (LIA) and appear to have played a major role in shaping significant regional societal changes at that time. New tree ring-width based reconstructions of monsoon variability suggest episodic and widespread reoccurrences of monsoon megadroughts continued throughout the LIA. Although the El-Niño Southern Oscillation (ENSO) plays an important role in monsoon variability, there is no conclusive evidence to suggest that these megadroughts were associated with anomalous sea surface temperature anomalies that were solely the result of ENSO-like variability in the tropical Pacific. Instead, the causative mechanisms of these megadroughts may reside in protracted changes in the synoptic-scale monsoon climatology of the Indian Ocean. Today, the intra-seasonal monsoon variability is dominated by ‘active’ and the ‘break’ spells – two distinct oscillatory modes of monsoon that have radically different synoptic scale circulation and precipitation patterns. We suggest that protracted locking of the monsoon into the “break-dominated” mode – a mode that favors reduced precipitation over the Indian sub-continent and SE Asia and enhanced precipitation over the equatorial Indian Ocean, may have caused these exceptional droughts. Impetus for periodic locking of the monsoon into this mode may have been provided by cooler temperatures at the extratropical latitudes in the Northern Hemisphere which forced the mean position of the Inter-Tropical Convergence Zone (ITCZ) further southward in the Indian Ocean.  相似文献   
63.
Potassium-rich calc-alkaline lavas of Lewotolo volcano, situated in the East Sunda Arc, Indonesia, contain the rare mineral zirconolite (CaZrTi2O7). Samples in which tiny grains of this mineral (3–25 μm in size) were found span the entire range of lava compositions (47–62 wt% SiO2). To the best of our knowledge, this is the first record of primary zirconolite in juvenile arc volcanics. The mineral forms part of a vesicle-filling assemblage consisting of a network of quenched feldspar crystals and an SiO2 phase, probably cristobalite. High contents of Th, U and REE (up to 9.3, 4.3 and 15.6 wt% oxide respectively) and very high Fe contents (up to 13.5 wt% Fe2O3) distinguish these zirconolites from those of other rock types. The extraction of volatile-rich phases with changing compositions in successive stages is considered to be responsible for the zirconolite formation. We hypothesise that a fluid capable of transporting HFSE, REE, Th and U was extracted from the magma and (partly) crystallised within voids which had formed earlier upon saturation of an aqueous fluid. Assuming that zirconolite compositions largely reflect trace metal contents of the coexisting fluid phase, significant amounts of `immobile' elements must have been transported on a macroscopic scale. Our findings thus point to a late-stage transfer of HFSE, REE, Th and U between different domains in a cooling magma body. Such a volatile-induced redistribution of trace elements at shallow levels of high-K volcanic systems may be significant for conventional geochemical modelling of magma evolution and for Th–U disequilibrium studies. Received: 3 November 1999 / Accepted: 29 February 2000  相似文献   
64.
The northern part of the Northeast German Basin contains a large number of Late Permian (Zechstein) salt pillows, whereas diapiric structures are almost completely absent. This lack of diapirs facilitated the study of early stages of salt movement in the basin. Salt pillows and related structures were investigated in terms of distribution, geometry and time of initiation of salt flow within the regional geological context. The primary Zechstein thickness in the study area was reconstructed to gain more insight into the relationship between the geometry of the salt layer and the style of the salt-related structures. In this study, no clear spatial relationship between the salt structures and basement faults has been found and the location of the salt structures in this area appears to be highly independent of the underlying structural grain. The overburden is affected by minor faulting. We propose that buckling of the overburden due to regional compression significantly contributed to the initiation of the Late Jurassic to Early Cretaceous salt structures in the basin. Reverse faulting of the Gardelegen and Haldensleben Faults is related to inversion tectonics and exerted a compression on the basin fill. During the deformation, the Late Permian salt layer acted as an efficient detachment and led to a marked decoupling of the Mesozoic overburden from the underlying pre-Zechstein rocks.  相似文献   
65.
Spectroradiometers using photodiode array detectors (PDAs) are increasingly applied for airborne and ground-based atmospheric measurements of spectral actinic flux densities due to their high time resolution (less than one second). However they have limited sensitivity of ultraviolet (UV) radiation for wavelengths less than about 305 nm. This results in uncertainties of ozone photolysis frequencies derived from spectral actinic flux density measurements using PDA spectrometers. To overcome this limitation a parameterization method is introduced which extrapolates the data towards the wavelength range of limited sensitivity of the PDA spectrometers (less than about 305 nm). The parameterization is based on radiative transfer simulations and is valid for measurements in the lower troposphere. The components of the suggested parameterization are the lower threshold wavelength of the PDA spectrometer, the slant ozone column (ratio of the total ozone column and the cosine of the solar zenith angle), and the ambient temperature. Tests of the parameterization with simulated actinic flux density spectra have revealed an uncertainty of the derived ozone photolysis frequency of ±5%. Field comparisons of the parameterization results with independent measurements of the ozone photolysis frequency were within ±10% for solar zenith angles less than 70^∘. Finally the parameterization was applied to airborne measurements to emphasize the advantage of high time resolution of PDA spectrometers to study ozone photolysis frequency fields in inhomogeneous cloud condtitions.  相似文献   
66.
67.
The chemical and isotopic composition of groundwater from 52 sites in the London (U.K.) area was determined as part of a project aimed at assessing the spatial variation in the age of Chalk groundwater, and in determining the relationship between fracture and matrix groundwater in this dual porosity system.Systematic changes in groundwater chemistry take place in the downgradient direction in response to several chemical processes. These processes include early concentration by evaporation and congruent dissolution of calcite followed by widespread incongruent dissolution and ion exchange in addition to local oxidation-reduction reactions, gypsum dissolution and saline intrusion. As a result of the above processes, Chalk groundwater follows an evolutionary path from Ca bicarbonate type to Na bicarbonate type.The age of Chalk groundwater was modelled using14C, δ13C,3H, δ2H and δ180. There is a general increase in the groundwater age in a downgradient direction with the oldest water found in N central areas of the basin. Groundwater in the unconfined zones and in areas S of the Greenwich fault is almost entirely of unevolved, modem composition. Carbon-14 modelling suggests that Chalk groundwater in the S basin is generally less than 10000 a old while that in the north is generally between 10000 and 25000 a old. The presence of3H in concentrations of up to 7 TU in groundwater which yields ages of several 1000 a, however, indicates that mechanisms exist for the rapid introduction of recent groundwater to the confined aquifer. Results of palaeorecharge temperature determinations using δ2H, δ180 and noble gas analytical results suggest that significant Devensian recharge did indeed occur in the aquifer.A model of the development of the Chalk recognizes that it is a classic dual porosity aquifer in which groundwater flow occurs predominantly in the fracture system. The upper 50 m of the aquifer was flushed with fresh water during the 2–3 × 106 a of the Quaternary and therefore meteoric water largely replaced the Tertiary and Cretaceous marine water that previously saturated the system. Most processes which control the chemistry of the groundwater occur in the matrix where the surface area is exceptionally high. Although fracture flow dominates the flow regime, diffusion from the matrix into the fracture porosity controls the chemistry of Chalk groundwater.  相似文献   
68.
Coal seams burning underneath the surface are recognized all over the world and have drawn increasing public attention in the past years. Frequently, such fires are analyzed by detecting anomalies like increased exhaust gas concentrations and soil temperatures at the surface. A proper analysis presumes the understanding of involved processes, which determine the spatial distribution and dynamic behavior of the anomalies.In this paper, we explain the relevance of mechanical and energy transport processes with respect to the occurrence of temperature anomalies at the surface. Two approaches are presented, aiming to obtain insight into the underground coal fire situation: In-situ temperature mapping and numerical simulation. In 2000 to 2005, annual temperature mapping in the Wuda (Inner Mongolia, PR China) coal fire area showed that most thermal anomalies on the surface are closely related to fractures, where hot exhaust gases from the coal fire are released. Those fractures develop due to rock mechanical failure after volume reduction in the seams. The measured signals at the surface are therefore strongly affected by mechanical processes.More insight into causes and effects of involved energy transport processes is obtained by numerical simulation of the dynamic behavior of coal fires. Simulations show the inter-relation between release and transport of thermal energy in and around underground coal fires. Our simulation results show a time delay between the coal fire propagation and the observed appearance of the surface temperature signal. Additionally, the overall energy flux away from the burning coal seam into the surrounding bedrock is about 30-times higher than the flux through the surface. This is of particular importance for an estimation of the energy released based on surface temperature measurements. Finally, the simulation results also prove that a fire propagation rate estimated from the interpretation of surface anomalies can differ from the actual rate in the seam.  相似文献   
69.
This study concentrates on the petrological and geochemical investigation of mafic rocks embedded within the voluminous Triassic June Complex of the central Sanandaj–Sirjan zone (Iran), which are crucial to reconstruct the geodynamics of the Neotethyan passive margin. The Triassic mafic rocks are alkaline to sub-alkaline basalts, containing 43.36–49.09 wt% SiO2, 5.19–20.61 wt% MgO and 0.66–4.59 wt% total alkalis. Based on MgO concentrations, the mafic rocks fall into two groups: cumulates (Mg# = 51.61–58.94) and isotropic basaltic liquids (Mg# = 24.54–42.66). In all samples, the chondrite-normalized REE patterns show enrichment of light REEs with variable (La/Yb)N ratios ranging from 2.48 to 9.00, which confirm their amalgamated OIB-like and E-MORB-like signatures. Enrichment in large-ion lithophile elements and depletion in high field strength elements (HFSE) relative to the primitive mantle further support this interpretation. No samples point to crustal contamination, all having undergone fractionation of olivine + clinopyroxene + plagioclase. Nevertheless, elemental data suggest that the substantial variations in (La/Sm)PM and Zr/Nb ratios can be explained by variable degrees of partial melting rather than fractional crystallization from a common parental magma. The high (Nb/Yb)PM ratio in the alkaline mafic rocks points to the mixing of magmas from enriched and depleted mantle sources. Abundant OIB alkaline basalts and rare E-MORB appear to be linked to the drifting stage on the northern passive margin of the Neotethys Ocean.  相似文献   
70.
Both hypervelocity impact and dynamic spall experiments were carried out on a series of well-indurated samples of gabbro to examine the relation between spall strength and maximum spall ejecta thickness. The impact experiments carried out with 0.04- to 0.2-g, 5- to 6-km/sec projectiles produced decimeter- to centimeter-sized craters and demonstrated crater efficiencies of 6 × 10?9 g/erg, an order of magnitude greater than in metal and some two to three times that of previous experiments on less strong igneous rocks. Most of the crater volume (some 60 to 80%) is due to spall failure. Distribution of cumulative fragment number, as a function of mass of fragments with masses greater than 0.1 g yield values of b = d(log Nf)/d log(m) ?0.5 ?0.6, where N is the cumulative number of fragments and m is the mass of fragments. These values are in agreement or slightly higher than those obtained for less strong rocks and indicate that a large fraction of the ejecta resides in a few large fragments. The large fragments are plate-like with mean values of B/A and C/A 0.8 0.2, respectively (A = long, B = termediate, and C = short fragment axes). The small equant-dimensioned fragments (with mass < 0.1 g and B ~ 0.1 mm) represent material which has been subjected to shear failure. The dynamic tensile strenght of San Marcos gabbro was determined at strain rates of 104 to 105 sec?1 to be 147 ± 9 MPa. This is 3 to 10 times greater than inferred from quasi-static (strain rate 100 sec?1) loading experiments. Utilizing these parameters in a continuum fracture model predicts a tensile strenght of σmε?[0.25–0.3], where ε is strain rate. It is suggested that the high spall strenght of basic igneous rocks gives rise to enhanced cratering efficiencies due to spall in the <102-m crater diamter strength-dominated regime. Although the impact spall mechanism can enhance cratering efficiencies it is unclear that resulting spall fragments achieve sufficient velocities such that fragments of basic rocks can escape from the surfaces of planets such as the Moon or Mars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号