首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   744篇
  免费   33篇
  国内免费   1篇
测绘学   7篇
大气科学   53篇
地球物理   191篇
地质学   254篇
海洋学   91篇
天文学   92篇
自然地理   90篇
  2022年   3篇
  2021年   7篇
  2020年   9篇
  2019年   12篇
  2018年   14篇
  2017年   12篇
  2016年   21篇
  2015年   18篇
  2014年   16篇
  2013年   42篇
  2012年   17篇
  2011年   44篇
  2010年   26篇
  2009年   41篇
  2008年   33篇
  2007年   32篇
  2006年   26篇
  2005年   20篇
  2004年   25篇
  2003年   26篇
  2002年   28篇
  2001年   17篇
  2000年   17篇
  1999年   21篇
  1998年   15篇
  1997年   7篇
  1996年   8篇
  1995年   8篇
  1994年   10篇
  1993年   11篇
  1992年   12篇
  1991年   4篇
  1990年   6篇
  1989年   6篇
  1988年   4篇
  1986年   11篇
  1985年   20篇
  1984年   22篇
  1983年   12篇
  1982年   10篇
  1981年   18篇
  1980年   13篇
  1977年   10篇
  1976年   5篇
  1975年   4篇
  1974年   4篇
  1973年   7篇
  1972年   3篇
  1966年   4篇
  1964年   2篇
排序方式: 共有778条查询结果,搜索用时 343 毫秒
121.
The ecosystem services provided by forests modulate runoff generation processes, nutrient cycling and water and energy exchange between soils, vegetation and atmosphere. Increasing atmospheric CO2 affects many linked aspects of forest and catchment function in ways we do not adequately understand. Global levels of atmospheric CO2 will be around 40% higher in 2050 than current levels, yet estimates of how water and solute fluxes in forested catchments will respond to increased CO2 are highly uncertain. The Free Air CO2 Enrichment (FACE) facility of the University of Birmingham's Institute of Forest Research (BIFoR) is the only FACE in mature deciduous forest. The site specializes in fundamental studies of the response of whole ecosystem patches of mature, deciduous, temperate woodland to elevated CO2 (eCO2). Here, we describe a dataset of hydrological parameters – seven weather parameters at each of three heights and four locations, shallow soil moisture and temperature, stream hydrology and CO2 enrichment – retrieved at high frequency from the BIFoR FACE catchment.  相似文献   
122.
Vennell  Ross  Scheel  Max  Weppe  Simon  Knight  Ben  Smeaton  Malcolm 《Ocean Dynamics》2021,71(4):423-437
Ocean Dynamics - Lagrangian particle tracking, based on currents derived from hydrodynamic models, is an important tool in quantifying bio-physical transports in the ocean. Particle tracking in the...  相似文献   
123.
We present a survey of bright optical dropout sources in two deep, multiwavelength surveys comprising 11 widely separated fields, aimed at constraining the galaxy luminosity function at   z ≈ 7  for sources at  5–10  L * ( z = 6)  . Our combined survey area is 225 arcmin2 to a depth of   J AB= 24.2  (3σ) and 135 arcmin2 to   J = 25.3  (4σ). We find that infrared data longwards of 2 μm are essential for classifying optical dropout sources, and in particular for identifying cool Galactic star contaminants. Our limits on the number density of high-redshift sources are consistent with current estimates of the Lyman break galaxy luminosity function at   z = 6  .  相似文献   
124.
A palynological study of oil exploration wells in the Gippsland Basin southeastern Australia has provided a record of southern high latitude climate variability for the last 12 million years of the Cretaceous greenhouse world. During this time, the vegetation was dominated by a cool to temperate flora of Podocarpaceae, Proteaceae and Nothofagidites spp. at a latitude of 60°S. Milankovitch forced cyclic alternations from drier to wetter climatic periods caused vegetation variability from 72 to 77 Ma. This climate change was probably related to the waxing and waning of ephemeral (100 ky) small ice sheets in Antarctica during times of insolation minima and maxima. Drying and cooling after 72 Ma culminated from 68 to 66 Ma, mirroring trends in global δ18O data. Quantitative palynofloral analyses have the potential to provide realistic proxies for small-scale climate variability in the predominantly ice-free Late Cretaceous.  相似文献   
125.
Financialization and urban politics: expanding the optic   总被引:1,自引:1,他引:0  
  相似文献   
126.
127.
Cuesta escarpment retreat is a principal mode of exhumation in regions of layered sedimentary rock. On the Colorado Plateau, this process acts as a mechanism for maintaining high‐relief topography and facilitating drainage divide migration. Quantitative estimates of cuesta evolution are difficult to evaluate over glacial‐interglacial timescales, and thus rates of geomorphic change along individual escarpments have mostly been constrained over millions of years. Several studies have addressed this problem by dating colluvium‐mantled talus flatirons. However, this technique has not been applied systematically on the Colorado Plateau. This study quantifies geomorphic change along a single Colorado Plateau cuesta using 36Cl surface exposure dating. We present 33 ages from a single generation of talus flatirons below the Coal Cliffs of central Utah. Landscape evolution is further constrained using 14 ages from in‐situ bedrock, 3 ages from boulders on gully interfluves, and two ages from terrace alluvium. Results suggest a colluvial apron was deposited below the cuesta beginning as early as Marine Isotope Stage 3, and the latest depositional phase occurred near the Last Glacial Maximum. A switch from apron deposition to incision initiated flatiron formation sometime between 19.7 ± 2.5 and 11.8 ± 1.6 ka, broadly coincident with the transition from glacial to interglacial conditions. Our results have several important implications. Climatic changes during the end of the last glacial period appear to have shifted the balance between deposition and erosion below the Coal Cliffs, emptying the sediment reservoir at their base and increasing their height via bedrock incision. The climatic forcing could be imparted by several mechanisms, including local controls on debris generation / mobilization and base level changes exerted by transverse streams. Similar processes may have occurred during previous glacial‐interglacial transitions, implying that the escarpment retreat processes may be partially modulated by orbitally‐controlled variations in Earth's climate over larger timescales. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
128.
Tracer breakthrough curves provide valuable information about the traced media, especially in inherently heterogeneous karst aquifers. In order to study the effect of variations in hydraulic gradient and conduit systems on breakthrough curves, a bench scale karst model was constructed. The bench scale karst model contains both matrix and a conduit. Eight tracing tests were conducted under a wide range of hydraulic gradients from 1 to greater than 5 for branchwork and network-conduit systems. Sampling points at varying distances from the injection point were utilized. Results demonstrate that mean tracer velocities, tracer mass recovery and linear rising slope of the breakthrough curves were directly controlled by hydraulic gradient. As hydraulic gradient increased, both one half the time for peak concentration and one fifth the time for peak concentration decreased. The results demonstrate the variations in one half the time for peak concentration and one fifth the time for peak concentration of the descending limb for different sampling points under differing hydraulic gradients are mainly controlled by the interactions of advection with dispersion. The results are discussed from three perspectives: different conduit systems, different hydraulic-gradient conditions, and different sampling points. The research confirmed the undeniable role of hydrogeological setting (i.e., hydraulic gradient and conduit system) on the shape of the breakthrough curve. The extracted parameters (mobile-fluid velocity, tracer-mass recovery, linear rising limb, one half the time for peak concentration, and one fifth the time for peak concentration) allow for differentiating hydrogeological settings and enhance interpretations the tracing tests in karst aquifers.  相似文献   
129.
Reef-associated landforms are coupled to the health of the reef ecosystem which produces the sediment that forms and maintains these landforms. However, this connection can make reef-fronted coastlines sensitive to the impacts of climate change, given that any decline in ecosystem health (e.g. decreasing sediment supply) or changes to physical processes (e.g. sea level rise, increasing wave energy) could drive the sediment budgets of these systems into a net erosive state. Therefore, knowledge of both the sediment sources and transport mechanisms is required to predict the sensitivity of reef-associated landforms to future climate change. Here, we examine the benthic habitat composition, sediment characteristics (composition, texture, and age), and transport mechanisms and pathways to understand the interconnections between coastal morphology and the reef system at Tantabiddi, Ningaloo Reef, Western Australia. Benthic surveys and sediment composition analysis revealed that although live coral accounts for less than 5% of the benthic cover, coral is the dominant sediment constituent (34% on average). Sediment ages (238U/230Th) were mostly found to be thousands of years old, suggesting that the primary sediment source is relic reef material (e.g. Holocene reef framework). Sediment transport across the lagoon was quantified through measurements of ripple migration rates, which were found to be shoreward migrating and responsible for feeding the large shoreline salient in the lee of the reef. The derived sediment fluxes were comparable with previously measured rates of sediment production by bioerosion. These results suggest that sediment budgets of systems dependent on old (>103 years) source materials may be more resilient to climate change as present-day reef health and community composition (i.e. sources of ‘new’ carbonate production) have limited influence on sediment supply. Therefore, the vulnerability of reef-associated landforms in these systems will be dictated by future changes to mechanisms of sediment generation (e.g. bioerosion) and/or physical processes. © 2018 John Wiley & Sons, Ltd.  相似文献   
130.
We investigate the spatial and temporal englacial and subglacial processes associated with a temperate glacier resting on a deformable bed using the unique Glacsweb wireless in situ probes (embedded in the ice and the till) combined with other techniques [including ground penetrating radar (GPR) and borehole analysis]. During the melt season (spring, summer and autumn), high surface melt leads to high water pressures in the englacial and subglacial environment. Winter is characterized by no surface melting on most days (‘base’) apart from a series of positive degree days. Once winter begins, a diurnal water pressure cycle is established in the ice and at the ice/sediment interface, with direct meltwater inputs from the positive degree days and a secondary slower englacial pathway with a five day lag. This direct surface melt also drives water pressure changes in the till. Till deformation occurred throughout the year, with the winter rate approximately 60% that of the melt season. We were able to show the bed comprised patches of till with different strengths, and were able to estimate their size, relative percentage and temporal stability. We show that the melt season is characterized by a high pressure distributed system, and winter by a low pressure channelized system. We contrast this with studies from Greenland (overlying rigid bedrock), where the opposite was found. We argue our results are typical of soft bedded glaciers with low englacial water content, and suggest this type of glacier can rapidly respond to surface-driven melt. Based on theoretical and field results we suggest that the subglacial hydrology comprises a melt season distributed system dominated by wide anastomosing broad flat channels and thin water sheets, which may become more channelized in winter, and more responsive to changes in meltwater inputs. © 2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号