首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   0篇
大气科学   2篇
地球物理   14篇
地质学   23篇
海洋学   2篇
天文学   7篇
综合类   1篇
自然地理   3篇
  2021年   1篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2014年   5篇
  2013年   2篇
  2012年   6篇
  2011年   5篇
  2009年   5篇
  2008年   2篇
  2006年   4篇
  2003年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1983年   1篇
  1971年   2篇
  1968年   1篇
  1962年   3篇
排序方式: 共有52条查询结果,搜索用时 0 毫秒
51.
Organogenic sediments (sapropels) in lakes are characterized by a reduced type of diagenesis, during which organic compounds are decomposed, the chemical composition of the pore waters is modified, and authigenic minerals (first of all, pyrite) are formed. Pyrolysis data indicate that organic matter undergoes radical transformatons already in the uppermost sapropel layers, and the composition of this organic matter is principally different from the composition of the organic matter of the its producers. The sapropels contain kerogen, whose macromolecular structure starts to develop during the very early stages of diagenesis, in the horizon of unconsolidated sediment (0–5 cm). The main role in the diagenetic transformations of organic matter in sediments is played by various physiological groups of microorganisms, first of all, heterotrophic, which amonifying, and sulfate-reducing bacteria. SO42? and Fe2+ concentrations in the pore waters of the sediments are determined to decrease (because of bacterial sulfate reduction), while concentrations of reduced Fe and S species (pyrite) in the solid phase of the sediment, conversely, increase. Comparative analysis shows that, unlike sapropels in lakes in the Baikal area, sapropels in southern West Siberia are affected by more active sulfate reduction, which can depend on both the composition of the organic matter and the SO42? concentration in the pore waters.  相似文献   
52.
The hydrothermal Mo-U deposits of the Strel’tsovka ore field, unique in reserves, are localized in the Late Mesozoic caldera of the same name. The consideration of geochemical processes that controlled uranium transfer by ore-bearing fluids and its precipitation in orebodies has shown that a nonstationary temperature distribution could have exerted a substantial effect on ore formation. The temperature field in the Strel’tsovka caldera, which was caused by a shallow-seated magma chamber that existed beneath the caldera by the onset of the ore stage, was simulated by mathematical modeling. A one-dimensional nonstationary model of conductive heat transfer taking into account the latent heat of magmatic melt crystallization was used. The problem was solved with the finite difference method. It has been established that, at optimal parameters of the model, the magma chamber would have completely crystallized in 56 ka; the maximum estimate is 133 ka. Three million years after emplacement of the granitic intrusion, the related thermal anomaly in the upper crust should have disappeared. The results obtained indicate that granitic melt of this chamber could not have been a source of uranium-bearing solutions that formed deposits 5 Ma after the cessation of magmatic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号