首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   223篇
  免费   13篇
  国内免费   4篇
测绘学   10篇
大气科学   18篇
地球物理   72篇
地质学   108篇
海洋学   12篇
天文学   4篇
综合类   6篇
自然地理   10篇
  2024年   2篇
  2023年   1篇
  2022年   9篇
  2021年   7篇
  2020年   9篇
  2019年   12篇
  2018年   24篇
  2017年   21篇
  2016年   20篇
  2015年   15篇
  2014年   19篇
  2013年   31篇
  2012年   13篇
  2011年   17篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2001年   3篇
  1999年   2篇
  1998年   3篇
  1994年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有240条查询结果,搜索用时 31 毫秒
51.
Developing countries must consider the influence of anthropogenic dynamics on changes in rangeland habitats. This study explores happened degradation in 178 rangeland management plans for Northeast Iran in three main steps: (1) conducting a trend analysis of rangeland degradation and anthropogenic dynamics in 1986-2000 and 2000-2015, (2) visualizing the effects of anthropogenic drivers on rangeland degradation using bivariate local spatial autocorrelation (BiLISA), and (3) quantifying spatial dependence between anthropogenic driving forces and rangeland degradation using spatial regression approaches. The results show that 0.77% and 0.56% of rangelands are degraded annually during the first and second periods. The BiLISA results indicate that dry-farming, irrigated farming and construction areas were significant drivers in both periods and grazing intensity was a significant driver in the second period. The spatial lag (SL) model (wi=0.3943, Ei=1.4139) with two drivers of dry-farming and irrigated farming in the first period and the spatial error (SE) model (wi=0.4853, Ei=1.515) with livestock density, dry-farming and irrigated farming in the second period showed robust performance in quantifying the driving forces of rangeland degradation. To conclude, the BiLISA maps and spatial models indicate a serious intensification of the anthropogenic impacts of ongoing conditions on the rangelands of northeast Iran in the future.  相似文献   
52.
53.
54.
55.
56.
57.
Natural Hazards - The western Makran subduction zone is capable of producing considerable tsunami run-up heights that penetrate up to 5 km inland. In this study, we show how climate change...  相似文献   
58.
Mikaili  Omidreza  Rahimzadegan  Majid 《Natural Hazards》2022,111(3):2511-2529

As drought occurs in different climates, assessment of drought impacts on parameters such as vegetation cover is of utmost importance. Satellite remote sensing images with various spectral and spatial resolutions represent information about different land covers such as vegetation cover. Hence, the purpose of this study was to investigate the performance of satellite vegetation indices to monitor the agricultural drought on a local scale. In this regard, satellite images including Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) data were used to evaluate vegetation cover and their gradual changes effects on agricultural drought. Fars province in Iran with relatively low precipitation values was selected as the study area. Modified Perpendicular Drought Index (MPDI), MPDI1, Vegetation Condition Index (VCI), Normalized Difference Vegetation Index Anomalies (NDVIA), and Standardized Vegetation Index (SVI), were evaluated to select the remote sensing based index with the best performance in drought monitoring. The performance of such indices were investigated during 13 years (2000–2013) for MODIS and 29 years (1985–2013) for AVHRR. To assess the efficiency of the satellite indices in drought investigation, Standardized Precipitation Index (SPI) data of five selected stations were used for 3, 6, and 9 month periods on August. The results showed that NDVI-based vegetation indices had the highest correlation with SPI in cold climate and long-term timescale (6 and 9 month). The highest correlation values between remote sensing based indices and SPI were acquired, respectively, in 9-month and 6-month time-scales, with the values of 43.5% and 40%. Moreover, VCI showed the highest capability for agricultural drought investigating in different climate regions of the study area. Overall, the results proved that NDVI-based indices can be used for drought monitoring and assessment in a long-term timescale on a local time-scale.

  相似文献   
59.
Fan  Jihui  Motamedi  Artemis  Galoie  Majid 《Natural Hazards》2021,106(1):595-612

In this study, the effect of downstream lakes or ponds on dam break flow was investigated. To do this, a robust finite volume method with Harten-Lax-van Leer contact surface Riemann’s solver technique for flux evaluation has been used. For space discretization, a triangular mesh grid was used and a complete software with mesh generator was developed. A reservoir with a long downstream channel was assumed, and many scenarios such as a single lake with various lengths, widths and positions along the channel and multiple consecutive lakes as symmetric and non-symmetric with respect to the channel centerline were considered. The numerical modeling of dam break flow along the channel showed that the downstream lake can decrease the speed and depth of the dam break wave front and the amount of this wave attenuation was very dependent on the storage volume of the lake and vortexes which were established in the lake.

  相似文献   
60.
ABSTRACT

This paper investigates conventional and soft-computing methods for the estimation of suspended sediment concentration (SSC) and load (SSL) in rivers. Frequently used methods of sediment rate curve (SRC) and multi-nonlinear regression, and soft-computing methods of multi-layer perceptron, multi-linear regression and adaptive neuro-fuzzy inference system are implemented using various hydrological and hydraulic parameters for the Little Kickapoo Creek Watershed, Illinois, USA. All methods performed equally well in the estimation of SSL, without any noticeable outperformance from any from the methods. However, the application of soft-computing methods decreased SSC estimation errors considerably as compared to the results of SRC. The results are significant in the way they reconcile traditionally used hydrological parameters into the soft-computing methods. Overall, soft-computing methods are recommended for the estimation of SSC in rivers because of their reasonably better performance and ease of implementation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号