首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   701篇
  免费   23篇
  国内免费   14篇
测绘学   34篇
大气科学   27篇
地球物理   165篇
地质学   358篇
海洋学   36篇
天文学   66篇
综合类   20篇
自然地理   32篇
  2023年   2篇
  2022年   3篇
  2021年   22篇
  2020年   30篇
  2019年   24篇
  2018年   71篇
  2017年   53篇
  2016年   70篇
  2015年   36篇
  2014年   57篇
  2013年   73篇
  2012年   29篇
  2011年   39篇
  2010年   35篇
  2009年   28篇
  2008年   20篇
  2007年   22篇
  2006年   12篇
  2005年   12篇
  2004年   15篇
  2003年   6篇
  2002年   4篇
  2001年   7篇
  2000年   5篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   6篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1978年   1篇
  1977年   4篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有738条查询结果,搜索用时 15 毫秒
191.
Two different phases of bismuth silicate nanofibers [Bi2SiO5 and Bi4(SiO4)3] were synthesized using electrospinning technique. BS nanofibers were tested for the photocatalytic degradation of methyl orange and safranin O dyes. Different phases of BS affect the photodegradation efficiency of nanofibers. Impressive enhancement in photocatalytic efficiency and BET surface area of Bi4(SiO4)3 was observed over Bi2SiO5. A speedy reduction in dyes concentration was attributed to the rapid formation of oxygenated radicals by the capture of electrons and holes, generated in the BS nanofiber by UV irradiation. Therefore, the photocatalytic mechanism was elucidated using impedance spectroscopy at room temperature. The lower impedance value of Bi4(SiO4)3 nanofibers had improved high-efficiency charge transfer capability. The cycling efficiency (30 times) and recovery characteristics pointed out that Bi4(SiO4)3 nanofibers photocatalysts had high constancy, resilience, and regeneration ability.  相似文献   
192.
A class of equilibrium solutions of the Vlasov equation for self-gravitating systems is discussed. The density and the potential are derived in form of Jacobi polynomials, which in a special case give rise to a model with uniform density.  相似文献   
193.
Biochar has been considered a safe soil additive to enhance soil fertility and agronomic traits of different crops. This study was conducted to explore the impacts of sugarcane waste straw biochar on soil characteristics and some agronomic traits of okra. The experiment was carried out with four treatments, i.e., control, sugarcane waste straw biochar (10 ton ha?1), farmyard manure (FYM, 10 ton ha?1), and chemical fertilizers (NPK; 120:100:80 kg ha?1) having three replications of each treatment. Soil samples were tested for texture, bulk density, particle density, pH, electrical conductivity (EC), organic matter content, nitrate nitrogen (NO3-N), and extractable-P. The sugarcane waste straw biochar was characterized for plant major nutrient elements. The impact of various treatments was observed on soils and agronomic traits of okra like plant height, fruit size, fruit length, and yield of okra. Results revealed that sugarcane waste straw biochar expressed higher EC value and noticeable amounts of nitrogen (N), phosphorus (P), potassium (K), sulfur (S), and magnesium (Mg). The sugarcane waste straw biochar, in comparison with FYM and NPK, significantly improved the NO3-N, extractable-P, OM and EC of the calcareous soil, and reduced the soil bulk density. Furthermore, plant growth and yield parameters were significantly improved under biochar application over the control, FYM and NPK. Overall, sugarcane waste straw biochar proved to be a good alternative to conventional organic and inorganic fertilizers under calcareous soil conditions.  相似文献   
194.
The basic geomorphic units in Parsoli surface of the Vindhyan Basin of Rajasthan have been photo-geomorphologically mapped. The paper presents morphology and controls of landscape genesis in structurally deformed cratonic regime.  相似文献   
195.
This study investigates the recent extreme temperature trends across 19 stations in the Klang Valley, Malaysia, over the period 2006-16. Fourteen extreme index trends were analyzed using the Mann-Kendall non-parametric test, with Sen’s slope as a magnitude estimator. Generally, the annual daily mean temperature, daily mean maximum temperature, and daily mean minimum temperature in the Klang Valley increased significantly, by 0.07°C yr~(-1), 0.07°C yr~(-1)and 0.08°C yr~(-1),respectively. For the warm temperature indices, the results indicated a significant upward trend for the annual maximum of maximum temperature, by 0.09°C yr~(-1), and the annual maximum of minimum temperature, by 0.11°C yr~(-1). The results for the total number of warm days and warm nights showed significant increasing trends of 5.02 d yr~(-1)and 6.92 d yr~(-1),respectively. For the cold temperature indices, there were upward trends for the annual minimum of maximum temperature,by 0.09°C yr~(-1), and the annual minimum of minimum temperature, by 0.03°C yr~(-1), concurrent with the decreases in the total number cold days (TX10P), with-3.80 d yr~(-1), and cold nights (TN10P), with-4.33 d yr~(-1). The 34°C and 37°C summer days results showed significant upward trends of 4.10 d yr~(-1) and 0.25 d yr~(-1), respectively. Overall, these findings showed upward warming trends in the Klang Valley, with the minimum temperature rate increasing more than that of the maximum temperature, especially in urban areas.  相似文献   
196.
The objective of this paper is to investigate the applicability of artificial neural networks in inverting quasi-3D DC resistivity imaging data. An electrical resistivity imaging survey was carried out along seven parallel lines using a dipole-dipole array to confirm the validation of the results of an inversion using an artificial neural network technique. The model used to produce synthetic data to train the artificial neural network was a homogeneous medium of 100Ωm resistivity with an embedded anomalous body of 1000Ωm resistivity. The network was trained using 21 datasets (comprising 12159 data points) and tested on another 11 synthetic datasets (comprising 6369 data points) and on real field data. Another 24 test datasets (comprising 13896 data points) consisting of different resistivities for the background and the anomalous bodies were used in order to test the interpolation and extrapolation of network properties. Different learning paradigms were tried in the training process of the neural network, with the resilient propagation paradigm being the most efficient. The number of nodes, hidden layers, and efficient values for learning rate and momentum coefficient have been studied. Although a significant correlation between results of the neural network and the conventional robust inversion technique was found, the ANN results show more details of the subsurface structure, and the RMS misfits for the results of the neural network are less than seen with conventional methods. The interpreted results show that the trained network was able to invert quasi-3D electrical resistivity imaging data obtained by dipole-dipole configuration both rapidly and accurately.  相似文献   
197.
Snowcover dynamics and associated accumulation and depletion of snowcover along with its spatial and temporal scale mainly constitute hydrological phenomena of the given basin and are mostly controlled by the local climate variables. Snow accumulation and melting time and duration determine the cyclic volume of water resources and downstream availability. In this study, snowcover area (SCA) was extracted from remotely sensed Moderate Resolution Imaging Spectroradiometer (MODIS) snow products (MOD10A2) for the period 2000–2016. Data for hydro-meteorological parameters was obtained from relevant departments acquired through their field stations. The analysis of 16-year satellite data shows that there is a slight increase in cryospheric area at high altitude. In Astore basin, the study concluded that 15–20% of the basin area is covered by glacier and snowcover may reach around 90–95% of the basin area due to accumulation of seasonal snow from the westerly wind circulation. Analysis of hydro-meteorological parameters showed significant correlation between temperatures (Tmax, Tmin) and river runoff while no significant correlation was observed between river runoff and rainfall. Similarly, significant inverse correlation was found between river runoff and Astore mean snowcover. At sub-altitudinal zone level (zones 1, 2, 3), river runoff has significant correlation with snowcover. Analysis of 20-year climate data along with river runoff depicts that river runoff is a general phenomenon of snowmelt when minimum temperature starts to rise above 4 °C during mid of April. The study highlights the importance and interdependence of meteorological parameters and snowcover dynamics in determining the hydrological characteristics of Astore Basin.  相似文献   
198.
Rock–Eval pyrolysis analysis, burial history, and 1D thermal maturity modeling have allowed the evaluation of the source rock potential, thermal maturation state, and impacts of the Pabdeh and Gurpi Formations in Cretaceous–Miocene petroleum system in the Naft Safid (NS) and Zeloi (ZE) oilfields, North Dezful Embayment. The total organic carbon (TOC) content of the Pabdeh and Gurpi Formations ranges from 0.2 to 4.7 wt% and 0.3 to 5.3 wt%, respectively. S2 values of the Pabdeh Formation in the ZE and NS oilfields vary from 0.41 to 13.77 and 0.29 to 14.5 mg HC (Hydrocarbon)/g rock, with an average value of 4.48 and 4.14 mg HC/g rock, respectively. These values for the Gurpi Formation in the ZE and NS oilfields range from 0.31 to 16.96 and 0.26 to 1.44 mg HC/g rock, with an average value of 8.54 and 2.43 mg HC/g rock, respectively. The S2 versus TOC diagram reveals a fair to good hydrocarbon generation potential of the Pabdeh Formation and poor to fair potential of the Gurpi Formation. The high values of S2 (S2 > S1) for samples of the both formations in the ZE and NS oilfields show that the samples are not contaminated with petroleum generated from underlying source rocks. The samples of the Pabdeh Formation in the ZE oilfield are characterized by a relatively narrow range of activation energy values with principal activation energy of 46 kcal/mol and frequency factor of 5.27 × 10+11 s?1. It seems that the high sulfur content of the Pabdeh organic matter probably caused the frequency factor and principal activation energy to be lower than usual. Hydrogen index (HI) values of the Pabdeh and Gurpi Formations in the ZE oilfield vary from 71 to 786 and 97 to 398 mg HC/g TOC, with an average value of 310 and 277 mg HC/g TOC, respectively. These values in the NS oilfield range from 66 to 546 and 51 to 525 mg HC/g TOC, with an average value of 256 and 227 mg HC/g TOC, respectively. Plot of HI vs. T max value indicates that the majority of the Pabdeh and Gurpi samples contain predominantly type II kerogen and their organofacies are directly related to the more homogeneous precursor materials. Based on thermal maturity modeling results, kinetic parameters, and Rock–Eval analysis, both formations in the ZE and NS oilfields are thermally mature and immature or early mature stage, respectively.  相似文献   
199.
200.
The exchanges of water, energy and carbon between the land surface and the atmosphere are tightly coupled, so that errors in simulating evapotranspiration lead to errors in simulating both the water and carbon balances. Areas with seasonally frozen soils present a particular challenge due to the snowmelt-dominated hydrology and the impact of soil freezing on the soil hydraulic properties and plant root water uptake. Land surface schemes that have been applied in high latitudes often have reported problems with simulating the snowpack and runoff. Models applied at the Boreal Ecosystem Research and Monitoring Sites in central Saskatchewan have consistently over-predicted evapotranspiration as compared with flux tower estimates. We assessed the performance of two Canadian land surface schemes (CLASS and CLASS-CTEM) for simulating point-scale evapotranspiration at an instrumented jack pine sandy upland site in the southern edge of the boreal forest in Saskatchewan, Canada. Consistent with past reported results, these models over-predicted evapotranspiration, as compared with flux tower observations, but only in the spring period. Looking systematically at soil properties and vegetation characteristics, we found that the dominant control on evapotranspiration within these models was the canopy conductance. However, the problem of excessive spring ET could not be solved satisfactorily by changing the soil or vegetation parameters. The model overestimation of spring ET coincided with the overestimation of spring soil liquid water content. Improved algorithms for the infiltration of snowmelt into frozen soils and plant-water uptake during the snowmelt and soil thaw periods may be key to addressing the biases in spring ET.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号