首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   784篇
  免费   34篇
  国内免费   16篇
测绘学   45篇
大气科学   39篇
地球物理   194篇
地质学   425篇
海洋学   34篇
天文学   62篇
综合类   6篇
自然地理   29篇
  2023年   5篇
  2022年   18篇
  2021年   39篇
  2020年   38篇
  2019年   30篇
  2018年   70篇
  2017年   56篇
  2016年   94篇
  2015年   46篇
  2014年   72篇
  2013年   88篇
  2012年   56篇
  2011年   51篇
  2010年   39篇
  2009年   33篇
  2008年   15篇
  2007年   11篇
  2006年   10篇
  2005年   5篇
  2004年   8篇
  2003年   6篇
  2002年   2篇
  2001年   6篇
  2000年   2篇
  1999年   1篇
  1998年   5篇
  1997年   5篇
  1995年   2篇
  1993年   6篇
  1991年   5篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1975年   3篇
  1971年   1篇
排序方式: 共有834条查询结果,搜索用时 15 毫秒
701.
The Eastern Desert of Egypt suffered a protracted period of deformation triggered by cratonization of the new juvenile crust known as the Arabian Nubian Shield (ANS), which has been proposed for potential gold discoveries associated with the corresponding tectonic event. The Fatira area, on the border of Egypt''s Northern and Central Eastern Deserts, is covered with metavolcanic rocks twisted by a dextral relocation of the Fatira Shear Zone (FSZ) relative to the Barud magmatic body. The recent study evaluated many deformed post-orogenic granitic intrusions and felsite dikes associated with promising mineralization localities, notably orogenic gold deposits. The combination of various field observations and remote sensing data, followed by the analysis of aeromagnetic enhanced maps, allowed the differentiation of distinct lithologies, structural features, and hydrothermal alterations in the study area. Additionally, the integrated results obtained from the different interpretation techniques are utilized to identify and confirm the previously supposed mineralized localities in the Fatira and Abu Zawal areas and predict other matched localities. The final ASTER, Sentinel 2 hydrothermal alteration, and orientation entropy heat maps demonstrate the association between these mineralized regions and major structures related to the FSZ late stage of deformation rather than other structures studied throughout the area of interest.  相似文献   
702.
703.
704.
Two sections from the Silurian deposits in the Central Iran Micro and Turan Plates were measured and sampled. These deposits are mostly composed of submarine volcanic rocks, skeletal and non-skeletal limestone, shale and sandstone that were deposited in low to high energy conditions (from tidal flat to deep open marine). According to gradual deepening trend, wide lateral distribution of facies as well as absence of resedimentation deposits, a depositional model of a homoclinal ramp was proposed for these deposits. Field observations and facies distribution indicate that, two depositional sequences were recognized in both sections. These sections show similarities in facies and depositional sequence during the Early Silurian in the area. Although there are some opinions and evidences that demonstrated Paleo-Tethys rifting phase started at the Late Ordovician-Early Silurian, similarities suggest that the Turan and Iran Plates were not completely detached tectonic block during this time, and that their depositional conditions were affected by global sea level changes and tectonic events.  相似文献   
705.
706.
The reduced transition probabilities from an electric quadrupole B(E2) and reduced transition probabilities from a magnetic dipole B(M1) between the ground state and the first excited state have been calculated for the3He(α,γ)7Be,8Be(α,γ)12C and12C(α,γ)16O radiative capture reactions with the M3Y potential.These reactions are important in stellar evolution.The calculated B(M1) and B(E2) for7Be nuclei are found to be 1.082×10-3e2fm2and 1.921 e2fm4from transitions 3/2-to 1/2-,respectively.The obtained values for reduced transition probabilities B(E2) for the12C and16O nuclei from transitions 0+to 2+are 12.54 e2fm4and 14.18 e2fm4,respectively.The results are in satisfactory agreement with available experimental data.  相似文献   
707.
The present study deals with the inhomogeneous plane symmetric models in scalar-tensor theory of gravitation. We used symmetry group analysis method to solve the field equations analytically. A new class of similarity solutions have been obtained by considering the inhomogeneous nature of metric potential. The physical behavior and geometrical aspects of the derived models are also discussed.  相似文献   
708.
In this study, a simplified analytical closed‐form solution, considering plane strain and axial symmetry conditions, for analysis of a circular pressure tunnel excavated underwater table, is developed. The method accounts for the seepage forces with the steady‐state flow and is based on the generalized effective stress law. To examine the effect of pore pressure variations and also the boundary conditions at the ground surface, the formulations are derived for different directions around the tunnel. The proposed method can be applied for analysis and design of pressure tunnels. Illustrative examples are given to demonstrate the performance of the proposed solution and also to examine the effect of seepage forces on the stability of tunnels. The simplified analytical solution derived in this study is compared with numerical analyses. It is concluded that the classic solutions (Lame's thick‐walled solution), considering the internal pressure as a mechanical load applied to the tunnel surface, are not applicable to pervious media and can result in an unsafe design. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
709.
The burial age of an alluvially deposited cobble pavement at the Tapada do Montinho archaeological site (east‐central Portugal) is investigated using optically stimulated luminescence (OSL) dating. Measurements on the cobbles (quartzite clasts) were carried out on intact slices and large aliquots (~8 mm) of quartz grains (63–300 μm), both recovered from the outer 1.5‐mm surface of the cobbles. The recycling ratio, recuperation and dose‐recovery tests show that the single‐aliquot regenerative‐dose (SAR) protocol is applicable to both rock slices and quartz grains; both have similar luminescence characteristics. The variation in the natural OSL signal with depth below the cobble surface using intact slices from two different cobbles shows that both were bleached to a depth of at least ~2 mm before deposition. A model of the variation of dose with depth fitted to data from one of the cobbles gives a burial age of ~19 ka and also predicts the dose‐depth variation at the time of deposition. Ages based on rock slices suggest that one cobble surface, and the inner parts of two other cobbles experienced a resetting event at ~45 ka, consistent with the age control. However, the surfaces of the other cobbles all record light‐exposure events in the range 26 to 14 ka, suggesting that some of the cobbles were exposed to daylight perhaps more than once in this period. Given the shallow burial depth and unexpectedly young ages of the surrounding and overlying finer‐grained sediment, it is suggested that phases of light exposure following surficial erosion are probably responsible for this underestimate. Nevertheless, it is remarkable that we can identify and quantify four events (two light exposures of different durations and two sequential burial periods) in the dose record contained within a single clast, and this suggests that the luminescence dating of rock surfaces may prove, in the future, to be at least as important as sand/silt sediment dating.  相似文献   
710.
This paper presents a non‐linear coupled finite element–boundary element approach for the prediction of free field vibrations due to vibratory and impact pile driving. Both the non‐linear constitutive behavior of the soil in the vicinity of the pile and the dynamic interaction between the pile and the soil are accounted for. A subdomain approach is used, defining a generalized structure consisting of the pile and a bounded region of soil around the pile, and an unbounded exterior linear soil domain. The soil around the pile may exhibit non‐linear constitutive behavior and is modelled with a time‐domain finite element method. The dynamic stiffness matrix of the exterior unbounded soil domain is calculated using a boundary element formulation in the frequency domain based on a limited number of modes defined on the interface between the generalized structure and the unbounded soil. The soil–structure interaction forces are evaluated as a convolution of the displacement history and the soil flexibility matrices, which are obtained by an inverse Fourier transformation from the frequency to the time domain. This results in a hybrid frequency–time domain formulation of the non‐linear dynamic soil–structure interaction problem, which is solved in the time domain using Newmark's time integration method; the interaction force time history is evaluated using the θ‐scheme in order to obtain stable solutions. The proposed hybrid formulation is validated for linear problems of vibratory and impact pile driving, showing very good agreement with the results obtained with a frequency‐domain solution. Linear predictions, however, overestimate the free field peak particle velocities as observed in reported field experiments during vibratory and impact pile driving at comparable levels of the transferred energy. This is mainly due to energy dissipation related to plastic deformations in the soil around the pile. Ground vibrations due to vibratory and impact pile driving are, therefore, also computed with a non‐linear model where the soil is modelled as an isotropic elastic, perfectly plastic solid, which yields according to the Drucker–Prager failure criterion. This results in lower predicted free field vibrations with respect to linear predictions, which are also in much better agreement with experimental results recorded during vibratory and impact pile driving. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号