首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   4篇
  国内免费   2篇
测绘学   6篇
大气科学   9篇
地球物理   15篇
地质学   44篇
海洋学   2篇
天文学   12篇
自然地理   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   6篇
  2016年   9篇
  2015年   5篇
  2014年   7篇
  2013年   10篇
  2012年   4篇
  2011年   5篇
  2010年   7篇
  2009年   5篇
  2008年   2篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   4篇
  2000年   2篇
排序方式: 共有89条查询结果,搜索用时 31 毫秒
61.
Prakash  Satya  Mahesh  C.  Gairola  R. M.  Pal  P. K. 《Natural Hazards》2012,60(2):689-701
Debris flow moves in the form of surge waves and consists of dozens or even hundreds of surges that are separated in time and space and have a variety of appearances, as exemplified in Jiangjia Gully, China. Observations there indicate that the deposit is made up by superposition of successive surges and deposit of a single surge is in effect a “frozen” surge. Then the study of debris flow is reduced to the study of surge sequence, which leads to a probabilistic picture of debris flow. This study attempts to find the probability distribution of velocity of surge using a huge data set of Jiangjia Gully. Statistics of the data shows that the velocity satisfies the Weibull distribution, which is believed to be universally valid because the distribution parameters vary little between events, with the shape parameter being well related to the average of velocity. It follows that the same distribution applies also to other quantities of debris flow, such as the flow depth and the discharge. Therefore, the distribution can be used to assess the magnitude and overflow range of a potential debris flow, as well as to the parameter calculation for engineering design.  相似文献   
62.
Mid-infrared (5–25 μm) transmission/absorption spectra of differentiated meteorites (achondrites) were measured to permit comparison with astronomical observations of dust in different stages of evolution of young stellar objects. In contrast to primitive chondrites, achondrites underwent heavy metamorphism and/or extensive melting and represent more advanced stages of planetesimal evolution. Spectra were obtained from primitive achondrites (acapulcoite, winonaite, ureilite, and brachinite) and differentiated achondrites (eucrite, diogenite, aubrite, and mesosiderite silicates). The ureilite and brachinite show spectra dominated by olivine features, and the diogenite and aubrite by pyroxene features. The acapulcoite, winonaite, eucrite, and mesosiderite silicates exhibit more complex spectra, reflecting their multi-phase bulk mineralogy.Mixtures of spectra of the primitive achondrites and differentiated achondrites in various proportions show good similarities to the spectra of the few Myr old protoplanetary disks HD104237A and V410 Anon 13. A spectrum of the differentiated mesosiderite silicates is similar to the spectra of the mature debris disks HD172555 and HD165014. A mixture of spectra of the primitive ureilite and brachinite is similar to the spectrum of the debris disk HD113766. The results raise the possibility that materials produced in the early stage of planetesimal differentiation occur in the protoplanetary and debris disks.  相似文献   
63.
Diamonds: time capsules from the Siberian Mantle   总被引:1,自引:0,他引:1  
Diamonds are thought to be “time capsules” from the Earth's mantle. However, by themselves, consisting of nearly pure carbon, diamonds provide little geochemical information about their conditions of formation and the nature of their mantle hosts. This obstacle to studying the origin of diamonds and their hosts can be overcome by using two main approaches that focus on studying: (1) the rocks that contain diamonds, i.e., diamondiferous xenoliths; and (2) mineral inclusions within the diamonds, the time capsule's little treasures, if you will. Diamondiferous xenoliths, their diamonds, and mineral inclusions within the diamonds are the subject of this review, focusing on studies of samples from the Yakutian kimberlites in the Siberian Platform.Studies of diamondiferous eclogite xenoliths significantly enhance our understanding of the complex petrogenesis of this important group of rocks and their diamonds. Such studies involve various geochemical and petrological investigations of these eclogites, including major and trace-element, radiogenic as well as stable isotopic analyses of whole rocks and minerals. The results from these studies have clearly established that the Group A-C eclogites originate from subduction of ancient oceanic crust. This theory is probably applicable worldwide.Within the last several years, our research group at Tennessee has undertaken the systematic dissection (pull apart) of diamondiferous eclogites from Siberia, consisting of the following steps: (1) high-resolution computed X-ray tomography of the xenoliths to produce 3D images that relate the minerals of the xenoliths to their diamonds; (2) detailed dissection of the entire xenolith to reveal the diamonds inside, followed by characterization of the setting of the diamonds within their enclosing minerals; and (3) extraction of diamonds from the xenolith for further investigation of the diamonds and their inclusions. In this last step, it is important that the nature and relative positions of the diamond inclusions are carefully noted in order to maximize the number of inclusions that can be exposed simultaneously on one polished surface. In this modus operandi, cathodoluminescence imaging, plus FTIR/N aggregation and C/N isotopic analyses are performed on polished diamond surfaces to reveal their internal growth zones and the spatial relationship of the mineral inclusions to these zones.Knowledge gained by such detailed, albeit work-intensive, studies continues to add immensely to the constantly evolving models of the origin of diamonds and their host rocks in the Earth's mantle, as well as to lithospheric stability models in cratonic areas. Multiple lines of evidence indicate the ultimate crustal origin for the majority of mantle eclogites. Similar pieces of evidence, particularly from δ13C in P-type diamonds and δ18O in peridotitic garnets lead to the suggestion that at least some of the mantle peridotites, including diamondiferous ones, as well as inclusions in P-type diamonds, may have had a crustal protolith as well.  相似文献   
64.
65.
The present work deals with the palaeoenvironment and depositional setting of the subsurface sediments from bore hole RT-4 of Tamra block from Raniganj coalfield of Damodar Basin, India. Nineteen shale samples were subjected to palynological and coal petrographical analyses. On the basis of botanical affinity between the miospores and the parent plants as well as the different plant groups, each coal plant assemblage was determined. The dominance of bisaccates such as Scheuringipollenites, Faunipollenites (=Protohaploxypinus), Striatopodocarpites and presence of monosaccates such as Densipollenites, Parasaccites reflect a peat forming community composed mainly of gymnosperms. Subordinate trilete spores derived from filicopsids (Cyclogranisporites, Horriditriletes, Brevitirletes, Callumispora, Microbaculsispora, Microfoveolatispora, Cyclobaculisporites), lycopsids (Indotriradites, Gondispoirtes and Didecitriletes) and sphenopsids (Laevigatosporites ) are less abundant occurring in variable proportions reflecting a hypautocthonous taphocenose. Presence of Botryococccus algae has been recorded. Palynofacies and petrographic analyses suggest deposition in open mires in a Limnic to limno-telmatic conditions with intermittent flooding of the site.  相似文献   
66.
Lunar meteorite EET 96008 is a fragmental breccia that predominantly consists of basaltic mineral clasts (0.5-2 mm), along with minor lithic fragments and breccia clasts. The matrix consists mainly of smaller mineral fragments (<0.5 mm), bound by glassy cement, the majority of which are pyroxene and plagioclase. The pyroxene possesses extensive exsolution lamellae. These lamellae, up to 1 μm in width, are atypical for mare-basalts. One of the distinguishing textures of EET 96008 is the presence of small pockets (∼400 × 500 μm) of mesostasis areas consisting of coarse (∼20 μm) intergrowths of ferroaugite, fayalite and Si-rich glass. Laths of ilmenite, armalcolite, apatite and whitlockite are also distributed in these areas. Ilmenite grains are abundant and dispersed throughout the thin sections. Chromite and ulvöspinel are present but in minor abundance. Troilite, generally rare in this rock, occurs as several grains in one pyroxene crystal. FeNi metal is conspicuously absent from this meteorite.The molar Fe/Mn ratio in olivines and pyroxenes and the age of the meteorite are evidence for a lunar origin. The mineralogy of EET 96008 shows close affinity to a mare-basalt source, albeit with possible minor highland/non-mare components. The bulk-rock, major-, trace- and rare-earth-element (REE) contents are similar to that of very low-titanium (VLT) basalts, which have experienced extreme fractional crystallization to the point of silicate liquid immiscibility. Mineralogical and textural features of this sample suggest that at least some of the breccia components were derived from a slow-cooled magma. The mineralogy and petrology of EET 96008 is strikingly similar to the lunar meteorite EET 87521, and we support the conclusion that EET 96008 and EET 87521 should be paired.Isochron ages of 3530 ± 270 Ma for apatite and 3519 ± 100 Ma for whitlockite of this rock are consistent with derivation from a mare-basalt precursor. These ages are within error of the low-Ti basalts, dated from the Apollo 12 and 15 sites. The whole-rock, platinum-group-element (PGE) contents of EET 96008 overlap with pristine low-Ti mare basalts, suggesting the presence of only a minimal extraterrestrial component.  相似文献   
67.
Groundwater accounts for about half of the water use for irrigation in India.The fluctuation pattern of the groundwater level is examined by observing rainfall replenishment and monitoring wells.The southern part of Rajasthan has experienced abrupt changes in rainfall and has been highly dependent on groundwater over decades.This study presents the impact of over-dependence on groundwater usage for irrigation and other purposes,spatially and temporally.Hence,the objective of this study is to examine the groundwater level trend by using statistical analysis and geospatial technique.Rainfall factor was also studied in groundwater level fluctuation during 2009-2019.To analyze the influence of each well during recharge or withdrawal of groundwater,thiessien polygonswere generated from them.In the Jakham River basin,75 wells have been identified for water level trend study using the Mann-Kendall statistical test.The statistics of trend analysis show that 15%wells are experiencing water level decline in pre-monsoon,while very low percentage of wells have such trend during post-monsoon season.The average rate of water level decline is 0.245 m/a in pre-monsoon and 0.05 m/a in post-monsoon.The aquifer recharge potential is also decreasing by year.it is expected that such type of studies will help the policy makers to adopt advanced management practices to ensure sustainable groundwater resource management.  相似文献   
68.
Cleary  Paul W.  Prakash  Mahesh  Mead  Stuart  Lemiale  Vincent  Robinson  Geoff K.  Ye  Fanghong  Ouyang  Sida  Tang  Xinming 《Natural Hazards》2015,75(2):1489-1530
Natural Hazards - Failure modes for earth dams are extensively reviewed and analysed using a three-pronged approach including a literature review, physical observations of a representative earth...  相似文献   
69.
The Ghawar anticline (GA) is the super-giant anticline belonging to a set of giant anticlines called the Rayn anticlines (RA) developed in the Eastern Province (EP), Saudi Arabia. The RA is situated within the Arabian block microplate forming the distant foreland of the Zagros. For the first time, using the ‘Reviewed ISC Earthquake Catalogue’ for the period of 1970-2010, it is demonstrated that the EP crust is seismogenic down to a depth of ~15 km or more and has a typical surface width of ~220 km; this width is ostensibly six-times wider than that of GA. The Saudi Geological Survey (SGS) Earthquake Network Catalogue is utilized to study local seismicity. The GA is locally seismically active such that 826 events have occurred during the period of 2005-2010, with a maximum magnitude of ML 4.24. Magnitude completeness (Mc) analysis, based on the assumption of self-similarity, suggests that all local earthquakes above a cut-off magnitude of ³2.7 have been detected in EP. Certain basic estimates on the average depth of origin of the induced events and histogram plot on the frequency of induced and ambient (natural) seismicity are illustrated. The induced events came almost in equal proportions from the Uthmaniyah-Hawaiyah and Haradh production divisions belonging to the central and southern oil/gas Fields in GA. Poroelastic parameters of the reservoir are reviewed with respect to the induced seismicity. Focal-depth distribution of events along the strike direction of seismic zones follows the ‘En-Nala axis’ in the GA and is used, together with ISC data, to broadly define the seismogenic crust from a 3D-perspective. Seismic activity below both production divisions is supposedly triggered by hydrocarbon fluid-extraction; locally triggered seismicity shows better correlation to mutually opposite reverse faults transgressing the Haradh and Uthmaniyah-Hawaiyah production divisions under the influence of regional compressive stress oriented along N40°E. Results from four composite focal mechanism solutions also support this contention.  相似文献   
70.
Apatite and merrillite are the most common phosphate minerals in a wide range of planetary materials and are key accessory phases for in situ age dating, as well as for determination of the volatile abundances and their isotopic composition. Although most lunar and meteoritic samples show at least some evidence of impact metamorphism, relatively little is known about how these two phosphates respond to shock‐loading. In this work, we analyzed a set of well‐studied lunar highlands samples (Apollo 17 Mg‐suite rocks 76535, 76335, 72255, 78235, and 78236), in order of displaying increasing shock deformation stages from S1 to S6. We determined the stage of shock deformation of the rock based on existing plagioclase shock‐pressure barometry using optical microscopy, Raman spectroscopy, and SEM‐based panchromatic cathodoluminescence (CL) imaging of plagioclase. We then inspected the microtexture of apatite and merrillite through an integrated study of Raman spectroscopy, SEM‐CL imaging, and electron backscatter diffraction (EBSD). EBSD analyses revealed that microtextures in apatite and merrillite become progressively more complex and deformed with increasing levels of shock‐loading. An early shock‐stage fragmentation at S1 and S2 is followed by subgrain formation from S2 onward, showing consistent decrease in subgrain size with increasing level of deformation (up to S5) and finally granularization of grains caused by recrystallization (S6). Starting with 2°–3° of intragrain crystal‐plastic deformation in both phosphates at the lowest shock stage, apatite undergoes up to 25° and merrillite up to 30° of crystal‐plastic deformation at the highest stage of shock deformation (S5). Merrillite displays lower shock impedance than apatite; hence, it is more deformed at the same level of shock‐loading. We suggest that the microtexture of apatite and merrillite visualized by EBSD can be used to evaluate stages of shock deformation and should be taken into account when interpreting in situ geochemically relevant analyses of the phosphates, e.g., age or volatile content, as it has been shown in other accessory minerals that differently shocked domains can yield significantly different ages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号