首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   10篇
  国内免费   7篇
测绘学   8篇
大气科学   8篇
地球物理   38篇
地质学   83篇
海洋学   3篇
天文学   6篇
综合类   1篇
自然地理   12篇
  2022年   9篇
  2021年   11篇
  2020年   9篇
  2019年   8篇
  2018年   16篇
  2017年   12篇
  2016年   9篇
  2015年   12篇
  2014年   16篇
  2013年   16篇
  2012年   6篇
  2011年   6篇
  2010年   9篇
  2009年   5篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2002年   2篇
  1986年   1篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
81.
The significance of liquefaction-related damage to pile foundations has been clearly demonstrated by the major earthquakes occurring during past years. The current project investigates the seismic behaviour of a single pile in the three-layered soil of the Babol City centre site (located in Babol City, Mazandaran Province, Iran). The site soil consists of sandy and clayey soils modelled based on the data collected from drilled boreholes. Numerical analysis was performed using Flac2D finite difference program. Three different natural ground motion records are considered, and the influence of each earthquake on the bending moment and lateral displacement of the simulated pile is investigated. In addition, the effect of vertical surcharge on the settlement of the pile during the earthquakes is investigated. Results illustrate that the maximum bending moment has occurred on the interface of liquefiable and non-liquefiable soil layers.  相似文献   
82.
Landslide susceptibility and hazard assessments are the most important steps in landslide risk mapping. The main objective of this study was to investigate and compare the results of two artificial neural network (ANN) algorithms, i.e., multilayer perceptron (MLP) and radial basic function (RBF) for spatial prediction of landslide susceptibility in Vaz Watershed, Iran. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 136 landside locations were constructed from various sources. Then the landslide inventory map was randomly split into a training dataset 70 % (95 landslide locations) for training the ANN model and the remaining 30 % (41 landslides locations) was used for validation purpose. Nine landslide conditioning factors such as slope, slope aspect, altitude, land use, lithology, distance from rivers, distance from roads, distance from faults, and rainfall were constructed in geographical information system. In this study, both MLP and RBF algorithms were used in artificial neural network model. The results showed that MLP with Broyden–Fletcher–Goldfarb–Shanno learning algorithm is more efficient than RBF in landslide susceptibility mapping for the study area. Finally the landslide susceptibility maps were validated using the validation data (i.e., 30 % landslide location data that was not used during the model construction) using area under the curve (AUC) method. The success rate curve showed that the area under the curve for RBF and MLP was 0.9085 (90.85 %) and 0.9193 (91.93 %) accuracy, respectively. Similarly, the validation result showed that the area under the curve for MLP and RBF models were 0.881 (88.1 %) and 0.8724 (87.24 %), respectively. The results of this study showed that landslide susceptibility mapping in the Vaz Watershed of Iran using the ANN approach is viable and can be used for land use planning.  相似文献   
83.
84.
The Pisco earthquake ( M w 8.0; 2007 August 15) occurred offshore of Peru's southern coast at the subduction interface between the Nazca and South American plates. It ruptured a previously identified seismic gap along the Peruvian margin. We use Wide Swath InSAR observations acquired by the Envisat satellite in descending and ascending orbits to constrain coseismic slip distribution of this subduction earthquake. The data show movement of the coastal regions by as much as 85 cm in the line-of-sight of the satellite. Distributed-slip model indicates that the coseismic slip reaches values of about 5.5 m at a depth of ∼18–20 km. The slip is confined to less than 40 km depth, with most of the moment release located on the shallow parts of the interface above 30 km depth. The region with maximum coseismic slip in the InSAR model is located offshore, close to the seismic moment centroid location. The geodetic estimate of seismic moment is 1.23 × 1021 Nm ( M w 8.06), consistent with seismic estimates. The slip model inferred from the InSAR observations suggests that the Pisco earthquake ruptured only a portion of the seismic gap zone in Peru between 13.5° S and 14.5° S, hence there is still a significant seismic gap to the south of the 2007 event that has not experienced a large earthquake since at least 1687.  相似文献   
85.
This article presents a comparison between two two-dimensional finite volume flood propagation models: SRH-2D and Hydro_AS-2D. The models are compared using an experimental dam-break test case provided by Soares-Frazão (J Hydraul Res, 2007. doi: 10.1080/00221686.2007.9521829). Four progressively refined meshes are used, and both models react adequately to mesh and time step refinement. Hydro_AS-2D shows some unphysical oscillations with the finest mesh and a certain loss of accuracy. For that test case, Hydro_AS-2D is more accurate for all meshes and generally faster than SRH-2D. Hydro_AS-2D reacts well to automatic calibration with PEST, whereas SRH-2D has some difficulties in retrieving the suggested Manning’s roughness coefficient.  相似文献   
86.
The prediction of wave parameters has a great significance in the coastal and offshore engineering. For this purpose, several models and approaches have been proposed to predict wave parameters, such as empirical, soft computing, and numerical based approaches. Recently, soft computing techniques such as recurrent neural networks (RNN) have been used to develop sea wave prediction models. In this study, the RNN for wave prediction based on the data gathered and the measurement of the sea waves in the Caspian Sea, in the north of Iran is used for this study. The efficiency of RNNs for 3, 6, and 12 hourly and diurnal wave prediction using correlation coefficients is calculated to be 0.96, 0.90, 0.87, and 0.73, respectively. This indicates that wave prediction by using RNNs yields better results than the previous neural network approaches.  相似文献   
87.
88.
Local and mine scale exploration models for anomaly recognition within known ore fields are discussed. Traditional geochemical exploration methods are based on multivariate statistical analysis, metallometry, vertical geochemical zonality and criteria of natural field geochemical associations, which suffer several shortcomings, including lack of a geostatistical generalised approach for separating anomalies from background. These shortcomings make the interpretation process time consuming and costly. Fuzzy set theory, fuzzy logic and neural network techniques seem very well suited for typical mining geochemistry applications. The results, obtained from applying the proposed technique to a real scenario, reveals significant improvements, comparing the results obtained from applying multivariate statistical analysis. Computationally, the introduced technique makes possible, without exploration drilling, the distinction between blind mineralisation and zone of dispersed ore mineralisation. The methodology developed in this research study has been verified by testing it on various real-world mining geochemical projects.  相似文献   
89.
Ground vibration is one of the common environmental effects of blasting operation in mining industry, and it may cause damage to the nearby structures and the surrounding residents. So, precise estimation of blast-produced ground vibration is necessary to identify blast-safety area and also to minimize environmental effects. In this research, a hybrid of adaptive neuro-fuzzy inference system (ANFIS) optimized by particle swarm optimization (PSO) was proposed to predict blast-produced ground vibration in Pengerang granite quarry, Malaysia. For this goal, 81 blasting were investigated, and the values of peak particle velocity, distance from the blast-face and maximum charge per delay were precisely measured. To demonstrate the performance of the hybrid PSO–ANFIS, ANFIS, and United States Bureau of Mines empirical models were also developed. Comparison of the predictive models was demonstrated that the PSO–ANFIS model [with root-mean-square error (RMSE) 0.48 and coefficient of determination (R 2) of 0.984] performed better than the ANFIS with RMSE of?1.61 and R 2 of 0.965. The mentioned results prove the superiority of the newly developed PSO–ANFIS model in estimating blast-produced ground vibrations.  相似文献   
90.
The objective of research done in this study is to examine the variability of the length of day (LOD) and to investigate its correlation with ENSO (El Niño-Southern oscillation) episodes. For this purpose, the LOD time series (1962–2015), from the International Earth Rotation and Reference Systems Service (IERS), is investigated using the Singular Spectrum Analysis (SSA) technique. The results show that the LOD time series is very complex and is composed of several components: the long-term trend explains 95.97% of the original series, the annual harmonic 1.76% and the semi-annual 1.35%. Considering sea surface temperature anomalies (SSTA) index over the Niño3, Niño4 and Niño3.4 regions, Southern Oscillation Index (SOI) and Multivariate ENSO Index (MEI), the residuals signal, that represents only 0.92% of the initial LOD series, indicate a significant correlation with ENSO occurred during 1965–66, 1972–73, 1982–83 and 1997–98 El Niño events and 1970–71, 1973–74, 1988–89, 2007–08, 2010–11 La Niña ones. This is a pertinent result that suggests that LOD variability is at least partly related to ENSO phenomena.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号