首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   9篇
  国内免费   7篇
测绘学   8篇
大气科学   8篇
地球物理   38篇
地质学   83篇
海洋学   3篇
天文学   6篇
综合类   1篇
自然地理   12篇
  2022年   9篇
  2021年   11篇
  2020年   9篇
  2019年   8篇
  2018年   16篇
  2017年   12篇
  2016年   9篇
  2015年   12篇
  2014年   16篇
  2013年   16篇
  2012年   6篇
  2011年   6篇
  2010年   9篇
  2009年   5篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2002年   2篇
  1986年   1篇
排序方式: 共有159条查询结果,搜索用时 31 毫秒
51.
The Laplace domain solutions have been obtained for three-dimensional groundwater flow to a well in confined and unconfined wedge-shaped aquifers. The solutions take into account partial penetration effects, instantaneous drainage or delayed yield, vertical anisotropy and the water table boundary condition. As a basis, the Laplace domain solutions for drawdown created by a point source in uniform, anisotropic confined and unconfined wedge-shaped aquifers are first derived. Then, by the principle of superposition the point source solutions are extended to the cases of partially and fully penetrating wells. Unlike the previous solution for the confined aquifer that contains improper integrals arising from the Hankel transform [Yeh HD, Chang YC. New analytical solutions for groundwater flow in wedge-shaped aquifers with various topographic boundary conditions. Adv Water Resour 2006;26:471–80], numerical evaluation of our solution is relatively easy using well known numerical Laplace inversion methods. The effects of wedge angle, pumping well location and observation point location on drawdown and the effects of partial penetration, screen location and delay index on the wedge boundary hydraulic gradient in unconfined aquifers have also been investigated. The results are presented in the form of dimensionless drawdown-time and boundary gradient-time type curves. The curves are useful for parameter identification, calculation of stream depletion rates and the assessment of water budgets in river basins.  相似文献   
52.
A new remediation technique is proposed to mitigate large deformations imposed on buried pipeline systems subject to permanent ground deformation. With this technique, low-density gravel(LDG) with high porosity, such as pumice,is used as backfill in the trench containing the pipe near an area susceptible to PGD. This countermeasure decreases soil resistance, soil-pipe interaction forces and strain on the pipe as the pipeline deformation mechanism changes to a more desirable shape. Expanded polys...  相似文献   
53.
Seismic response of pile foundations in liquefiable soil: parametric study   总被引:1,自引:1,他引:1  
The performance of pile foundations in liquefiable soil subjected to earthquake loading is a very complex process. The strength and stiffness of the soil decrease due to the increase in pore pressure. The pile can be seriously destroyed by the soil liquefaction during strong earthquakes. This paper presents the response of vertical piles in liquefiable soil under seismic loads. A finite difference model, known as fast Lagrangian analysis of continua, is used to study the pile behavior considering a nonlinear constitutive model for soil liquefaction and pile?Csoil interaction. The maximum lateral displacement and maximum pile bending moment are obtained for different pile diameters, earthquake predominant frequencies, Arias intensities, and peak accelerations. It is found that the maximum lateral displacement and the maximum pile bending moment increase when the predominant earthquake frequency value decreases for a given peak acceleration value.  相似文献   
54.
A novel approach is introduced to generate simulated ground motion records by considering spectral acceleration correlations at multiple periods. Most of the current reliable Ground Motion Record(GMR) simulation procedures use a seismological model including source, path and site characteristics. However, the response spectrum of simulated GMR is somewhat different when compared with the response spectrum based on recorded GMRs. More specifi cally, the correlation between the spectral values at multiple periods is a characteristic of a record which is usually different between simulated and recorded GMRs. As this correlation has a signifi cant infl uence on the structural response, it is needed to investigate the consistency of the simulated ground motions with actual records. This issue has been investigated in this study by incorporating an optimization algorithm within the Boore simulation technique. Eight seismological key parameters were optimized in order to achieve approximately the same correlation coeffi cients and spectral acceleration between two sets of real and simulated records. The results show that the acceleration response spectra of the synthetic ground motions also have good agreement with the real recorded response spectra by implementation of the proposed optimized values.  相似文献   
55.
Seafloor topography certainly has an impact on ocean circulation in different ways. Due to this assumption, the sea surface currents calculated by optical flow (Horn–Schunck) and geostrophic currents methods are analyzed to observe this impact. Pair of sea surface temperature imageries, calculated sea surface height and sea level anomaly are showed beside depth map in areas with meaningful bathymetric features such as underwater mountains and pools. The reason for the formation of some eddies in the Caspian Sea and Indian Ocean is concluded from the location of pools and knolls. In this study, in addition to introducing new time span for calculating geostrophic currents, Ocean Surface Current Analyses Real-Time (OSCAR) currents are applied to validate our estimated currents. Variety of products such as sea surface temperature imageries, OSCAR currents, depth map, calculated results like sea level anomaly and absolute dynamic topography and estimated currents via optical flow and geostrophic currents have been collected in this paper to make very detailed investigation on depth effect on mentioned water parameters. Results show that impacts of knolls and pools are meaningfully clear in optical flow and geostrophic currents in shaping and rationing water motions.  相似文献   
56.
The Influence of Shearing Velocity on Shear Behavior of Artificial Joints   总被引:1,自引:1,他引:0  
In this paper, the effects of shear velocity on the shearing behavior of artificial joints have been studied at different normal stress levels. Here, artificial joints with planar and rough surfaces were prepared with the plaster (simulating soft rock joints) and concrete (medium-hard rock joints) materials. The rough joints had triangular shaped asperities with 10° and 20° inclination angles. Direct shear tests were performed on these joints under various shear velocities in the range of 0.3–30 mm/min. The planar plaster–plaster and planer concrete–concrete joints were sheared at three levels of normal stress under constant normal load boundary condition. Also, the rough plaster–plaster and concrete–concrete joints were sheared at one level of normal stress under constant normal stiffness boundary condition. The results of the shear tests show that the shearing parameters of joints, such as shear strength, shear stiffness and friction angle, are related to the shear velocity. Shear strength of planar and rough plaster–plaster joints were decreased when the shear velocity was increased. Shear strength of concrete joints, except for rough joints with 10° inclination, increased with increasing shear velocity. Regardless of the normal stress level, shear stiffness of both planar plaster–plaster and concrete–concrete joints were decreased when the shear velocity was increased.  相似文献   
57.
The sea level change is a crucial indicator of our climate. The spatial sampling offered by satellite altimetry and its continuity during the last 18 years are major assets to provide an improved vision of the sea level changes. In this paper, we analyze the University of Colorado database of sea level time series to determine the trends for 18 large ocean regions by means of the automatic trend extraction approach in the framework of the singular spectrum analysis technique. Our global sea level trend estimate of 3.19 mm/year for the period from 1993 to 2010 is comparable with the 3.20-mm/year sea level rise since 1993 calculated by AVISO Altimetry. However, the trends from the different ocean regions show dissimilar patterns. The major contributions to the global sea level rise during 1993–2010 are from the Indian Ocean (3.78?±?0.08 mm/year).  相似文献   
58.
This paper presents a new numerical model for river morphological predictions. This tool predicts vertical and lateral cross-section variations for alluvial rivers, which is an important task in predicting the associated hazard zone after a flood event. The Model for the HYdraulics of SEdiments in Rivers, version 1.0 (MHYSER 1.0) is a semi-two-dimensional model using the stream tubes concept to achieve lateral variations of velocity, flow stresses, and sediment transport rates. Each stream tube has the same conveyance as the other ones. In MHYSER 1.0, the uncoupled approach is used to solve the set of conservation equations. After the backwater calculation, the river is divided into a finite number of stream tubes of equal conveyances. The sediment routing and bed adjustments calculations are accomplished separately along each stream tube taking into account lateral mass exchanges. The determination of depth and width adjustments is based on the minimum stream power theory. Moreover, MHYSER 1.0 offers two options to treat riverbank stability. The first one is based on the angle of repose. The bank slope should not be allowed to increase beyond a certain critical value supplied to MHYSER 1.0. The second one is based on the modified Bishop’s method to determine a safety factor evaluating the potential risk of a landslide along the river bank.  相似文献   
59.
Flyrock is an adverse effect produced by blasting in open-pit mines and tunneling projects. So, it seems that the precise estimations and risk level assessment of flyrock are essential in minimizing environmental effects induced by blasting. The first aim of this research is to model the risk level associated with flyrock through rock engineering systems (RES) methodology. In this regard, 62 blasting were investigated in Ulu Tiram quarry, Malaysia, and the most effective parameters of flyrock were measured. Using the most influential parameters on flyrock, the overall risk of flyrock was obtained as 32.95 which is considered as low to medium degree of vulnerability. Moreover, the second aim of this research is to estimate flyrock based on RES and multiple linear regression (MLR). To evaluate performance prediction of the models, some statistical criteria such as coefficient of determination (R2) were computed. Comparing the values predicted by the models demonstrated that the RES has more suitable performance than MLR for predicting the flyrock and it could be introduced as a powerful technique in this field.  相似文献   
60.
Interferometric identification and health monitoring of high‐rise buildings has been gaining increasing interest in recent years. The wave dispersion in the structure has been largely ignored in these efforts but needs to be considered to further develop these methods. In this paper, (i) the goodness of estimation of vertical wave velocity in buildings, as function of frequency, by two nonparametric interferometric techniques is examined, using realistic fixed‐base Timoshenko beam benchmark models. Such models are convenient because the variation of phase and group velocities with frequency can be derived theoretically. The models are those of the NS and EW responses of Millikan Library. One of the techniques, deconvolution interferometry, estimates the phase velocity on a frequency band from phase difference between motions at two locations in the structure, while the other one estimates it approximately at the resonant frequencies based on standing wave patterns. The paper also (ii) examines the modeling error in wave velocity profiles identified by fitting layered shear beam in broader band impulse response functions of buildings with significant bending flexibility. This error may affect inferences on the spatial distribution of damage from detected changes in such velocity profiles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号