首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   0篇
  国内免费   1篇
测绘学   2篇
大气科学   1篇
地球物理   22篇
地质学   22篇
海洋学   9篇
天文学   14篇
综合类   1篇
自然地理   7篇
  2024年   1篇
  2022年   2篇
  2021年   1篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2012年   1篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   6篇
  2005年   4篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   5篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1988年   1篇
  1964年   1篇
排序方式: 共有78条查询结果,搜索用时 31 毫秒
61.
In the analysis of spatiotemporal processes underlying environmental studies, the estimation of the non-stationary spatial covariance structure is a well known issue in which multidimensional scaling (MDS) provides an important methodological approach (Sampson and Guttorp in J Am Stat Assoc 87:108–119, 1992). It is also well known that approximating dispersion by a non-metric MDS procedure offers, in general, low precision when accurate differences in spatial dispersion are needed for interpolation purposes, specially if a low dimensional configuration is employed besides a high number of stations in oversampled domains. This paper presents a modification, consisting of including geographical spatial constraints, of Heiser and Groenen’s (Psychometrika 62:63–83, 1997) cluster differences scaling algorithm by which not the original stations but the cluster centres can be represented, while the stations and clusters retain their spatial relationships. A decomposition of the sum of squared dissimilarities into contributions from several sources of variation can be employed for an exploratory diagnosis of the model. Real data are analyzed and differences between several cluster-MDS strategies are discussed.  相似文献   
62.
Multidimensional scaling (MDS) has played an important role in non-stationary spatial covariance structure estimation and in analyzing the spatiotemporal processes underlying environmental studies. A combined cluster-MDS model, including geographical spatial constraints, has been previously proposed by the authors to address the estimation problem in oversampled domains in a least squares framework. In this paper is formulated a general latent class model with spatial constraints that, in a maximum likelihood framework, allows to partition the sample stations into classes and simultaneously to represent the cluster centers in a low-dimensional space, while the stations and clusters retain their spatial relationships. A model selection strategy is proposed to determine the number of latent classes and the dimensionality of the problem. Real and artificial data sets are analyzed to test the performance of the model.  相似文献   
63.
Meteoritical and astrophysical models of planet formation make contradictory predictions for dust concentration factors in chondrule-forming regions of the solar nebula. Meteoritical and cosmochemical models strongly suggest that chondrules, a key component of the meteoritical record, formed in regions with solids-to-gas mass ratios orders above the solar nebula average. However, models of dust grain dynamics in protoplanetary disks struggle to surpass concentration factors of a few except during very short-lived stages in a dust grain's life. Worse, those models do not predict significant concentration factors for dust grains the size of chondrule precursors. We briefly develop the difficulty in concentrating dust particles in the context of nebular chondrule formation and show that the disagreement is sufficiently stark that cosmochemists should explore ideas that might revise the concentration factor requirements downward.  相似文献   
64.
Undeformed felsic to mafic igneous rocks, dated by U–Pb zircon geochronology between 311 and 255 Ma, intrude different units of the Oaxacan and Acatlán metamorphic complexes in southwestern Mexico. Rare earth element concentrations on zircons from most of these magmatic rocks have a typical igneous character, with fractionated heavy rare earths and negative Eu anomalies. Only inherited Precambrian zircons are depleted in heavy rare earth elements, which suggest contemporaneous crystallization in equilibrium with metamorphic garnet during granulite facies metamorphism. Hf isotopic signatures are, however, different among these magmatic units. For example, zircons from two of these magmatic units (Cuanana pluton and Honduras batholith) have positive εHf values (+3.8–+8.5) and depleted mantle model ages (using a mean crustal value of 176Lu/177Hf = 0.015) (T DMC) ranging between 756 and 1,057 Ma, whereas zircons from the rest of the magmatic units (Etla granite, Zaniza batholith, Carbonera stock and Sosola rhyolite) have negative εHf values (?1 to ?14) and model ages between 1,330 and 2,160 Ma. This suggests either recycling of different crustal sources or, more likely, different extents of crustal contamination of arc-related mafic magmas in which the Oaxacan Complex acted as the main contaminant. These plutons thus represent the magmatic expression of the initial stages of eastward subduction of the Pacific plate beneath the western margin of Gondwana, and confirm the existence of a Late Carboniferous–Permian magmatic arc that extended from southern North America to Central America.  相似文献   
65.
Marson  Stephen M.  Legerton  Mac 《Natural Hazards》2021,107(3):2247-2262
Natural Hazards - This paper presents a case study of Robeson County’s challenges in addressing the double-barrel disasters of Hurricane Matthew in 2016 (Category 5) and Hurricane Florence in...  相似文献   
66.
Palaeomagnetic techniques for estimating the emplacement temperatures of volcanic deposits have been applied to pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. Lithic clasts were sampled from a variety of lithofacies from three pipes for which the internal geology is well constrained (the Cretaceous A/K1 pipe, Orapa Mine, Botswana, and the Cambrian K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions, layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Basalt lithic clasts in the layered and massive vent-filling pyroclastic deposits in the A/K1 pipe at Orapa were emplaced at >570°C, in the pyroclastic crater-filling deposits at 200–440°C and in crater-filling talus breccias and volcaniclastic breccias at <180°C. The results from the K1 and K2 pipes at Venetia suggest emplacement temperatures for the vent-filling breccias of 260°C to >560°C, although the interpretation of these results is hampered by the presence of Mesozoic magnetic overprints. These temperatures are comparable to the estimated emplacement temperatures of other kimberlite deposits and fall within the proposed stability field for common interstitial matrix mineral assemblages within vent-filling volcaniclastic kimberlites. The temperatures are also comparable to those obtained for pyroclastic deposits in other, silicic, volcanic systems. Because the lithic content of the studied deposits is 10–30%, the initial bulk temperature of the pyroclastic mixture of cold lithic clasts and juvenile kimberlite magma could have been 300–400°C hotter than the palaeomagnetic estimates. Together with the discovery of welded and agglutinated juvenile pyroclasts in some pyroclastic kimberlites, the palaeomagnetic results indicate that there are examples of kimberlites where phreatomagmatism did not play a major role in the generation of the pyroclastic deposits. This study indicates that palaeomagnetic methods can successfully distinguish differences in the emplacement temperatures of different kimberlite facies.  相似文献   
67.
 Peridotites, dykes and gabbros from the 470–420 Ma Trinity Ophiolite Complex of northern California exhibit large geochemical rare earth element (REE) and Nd isotopic variations on the small scales which are indicative of a complex history. The Trinity Ophiolite, which covers an area of ≈1600 km2, consists of three distinct units: (1) a ∼2–4 km-thick sheet of plastically deformed peridotites, including various ultrabasic lithologies (plagioclase and spinel lherzolite, harzburgite, wherlite and dunite); the peridotite unit is a fragment of mantle lithosphere of oceanic affinity; (2) a series of small (∼1 km diameter) undeformed gabbroic massifs; (3) several generations of basic dykes. The peridotites display the largest geochemical and isotopic variations, with ɛNd(T) values ranging from +10 down to 0. In the gabbroic massifs and intrusive dykes, the variation in model ɛNd(T) values is reduced to 7 ɛNd units: 0 to +7. As a general rule, peridotites, gabbros and dykes with ɛNd(T) values around 0 or +3 give less depleted L(light)REE patterns than do those with ɛNd(T) values in the range +7 to +10. In the peridotites, the Nd isotopic variations take place over very short distances, with jumps as large as 7 ɛNd units occurring on scales of less than 20 m. Comparison with available age data indicates that the peridotites with ɛNd(T)≈+10 could be slightly older than the intrusive gabbro massifs and basic dykes (470 Ma vs. 420 Ma). Strontium isotopic data used in connection with Sm-Nd results demonstrate that the 10 ɛNd units variation displayed by the Trinity Peridotite is a primary feature and not an artefact due to REE mobility during seawater interaction. The variable Nd isotopic signatures and variable LREE patterns in the Trinity Peridotite cannot represent mantle source characteristics as there is evidence that this unit was partially melted when it rose as part of the upwelling convecting mantle. Field, petrographic, geochemical and isotopic data rather suggest that the observed heterogeneity is due to local reactions between a 470 Ma proto-peridotite with ɛNd(T)=+10 and younger (420 Ma) basaltic melts with lower ɛNd(T) values (i.e. the gabbroic massifs and the dykes). The gabbros and basic dykes of the Trinity Complex have geochemical and isotopic compositions similar to the arc basalts from the adjacent Copley Formation, so it is proposed that the younger melts are related to arc magmatism. Received: 13 January 1995/Accepted 5 May 1995  相似文献   
68.
One key feature of our protoplanetary disk that shaped its transformation into a system of planetary bodies was its vast magnetic field. Unique constraints on the properties of this field can be gleaned from paleomagnetic measurements of certain meteorites. Here, we apply this approach to the recent CM chondrite fall Winchcombe with the aim of constructing the most complete and reliable record to date of the behavior of the disk field in the outer solar system. We find that the interior of Winchcombe carries a stable, pre-terrestrial magnetization that likely dates from the period of aqueous alteration of the CM chondrite parent body. This remanence corresponds to a paleointensity of 31 ± 17 μT accounting for the average effect of parent body rotation. Winchcombe is rich in framboids and plaquettes of magnetite, which formed via precipitation following the dissolution of iron sulfide. This contrasts with most other CM chondrites, where magnetite formed predominantly via pseudomorphic replacement of FeNi metal. Accounting for the potential differences in recording fidelities of these types of magnetite, we find that the reported paleointensities from all CM chondrites to date are likely underestimates of the disk field intensity in the outer solar system, and use our measurements to calculate a unified intensity estimate of ~78 μT. This paleointensity is consistent with two independent values from recent studies, which collectively argue that the disk field could have played a larger role in shaping the behavior of the disk in the outer solar system than previously considered.  相似文献   
69.
2 abundance and depletion in MgO, CaO, TiO2, as well as trace and rare earth elements. This suggests segregation of olivine and orthopyroxene from the melt. Since human settlements in southeast Mexico and Central America can be traced as far back as approximately 2500 years BP, most of these events probably affected human activity. In fact, there are reports of pottery shards and other artifacts in deposits from the eruption of 1250 BP. Pottery fragments in deposits of an eruption that took place 2500 BP are also reported in this paper. Thus, the impact of the volcano on human activities has been frequent, with most of the repose intervals lasting between 100 to 600 years. The impact of the eruptions was probably of greater than local extent, because airfall tephra could reach distant sites and possibly even affect weather. The eruptive history of El Chichón also offers clues in the investigation of the Maya civilization. Several researchers have considered the volcano as an important factor in the answer to some intriguing questions such as the extensive use of volcanic ash in Late Classic Maya ceramics or, of greater importance, the causes of the collapse of the Classic Maya civilization. Received : 4 May 1998 / Accepted: 1 November 1999  相似文献   
70.
The stratigraphy of Betic of Málaga and of Subbetic near Vélez Rubio is given. No major tectonic movement took place between Paleozoic and Oligo-Miocene in the area of deposition of the Betic of Málaga and neighbourhood. The geology and formations of the narrow zone between Betic of Málaga and Subbetic are described. Nappe movement of the Betic of Málaga is older than the thrusting of Subbetic over Prebetic. Age of the former movement and origin of major tectonic units are tested on the characteristics of a pre-Orbulina marl formation and on the distribution of the detritus contained in this formation.
Zusammenfassung Die Stratigraphie des Betikums von Málaga, des Subbetikums und der zwischen beiden Einheiten liegenden Zone wird aus dem Gebiet von Vélez Rubio beschrieben.Größere tektonische Bewegungen haben zwischen Paläozoikum und OligoMiozän im Ablagerungsgebiet des Betikums von Málaga und in der näheren Umgebung nicht stattgefunden. Die Deckenbewegung des Betikums von Málaga ist älter als die Überschiebung des Subbetikums über das Präbetikum. Das Alter der Deckenbewegung und der Ursprung der größeren tektonischen Einheiten werden an Hand der Merkmale einer Prä-Orbulina Mergel-Einheit und an Hand der Verbreitung des in dieser Einheit enthaltenen Schutts überprüft.

Résumé Les auteurs exposent la stratigraphie du Bétique de Málaga et du Subbétique dans les environs de Vélez Rubio. Aucun mouvement tectonique important n'a eu lieu entre le Paléozoïque et l'Oligo-Miocène dans l'aire sédimentaire du Bétique de Málaga et les régions limitrophes. Les formations de l'étroite zone comprise entre Bétique de Málaga et Subbétique sont étudiées, ainsi que leur relations mutuelles. Le mouvement de nappe du Bétique de Málaga est plus ancien que le chevauchement du Subbétique sur le Prébétique. L'âge de celui-là, ainsi que l'origine des unités tectoniques principales sont examinés en utilisant les caractéristiques d'une formation d'âge pré-Orbulina ainsi que la répartition des débris dérivés de ces unités tectoniques qu'elle contient.

Ba . -. .
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号