首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   17篇
  国内免费   3篇
测绘学   5篇
大气科学   11篇
地球物理   57篇
地质学   62篇
海洋学   16篇
天文学   13篇
综合类   1篇
自然地理   25篇
  2023年   1篇
  2021年   6篇
  2020年   9篇
  2019年   12篇
  2018年   5篇
  2017年   5篇
  2016年   10篇
  2015年   6篇
  2014年   7篇
  2013年   8篇
  2012年   7篇
  2011年   12篇
  2010年   16篇
  2009年   16篇
  2008年   8篇
  2007年   5篇
  2006年   9篇
  2005年   10篇
  2004年   4篇
  2003年   6篇
  2002年   8篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   5篇
  1993年   1篇
  1991年   1篇
  1982年   1篇
  1978年   2篇
  1975年   1篇
排序方式: 共有190条查询结果,搜索用时 281 毫秒
181.
Starting from a given time‐migrated zero‐offset data volume and time‐migration velocity, recent literature has shown that it is possible to simultaneously trace image rays in depth and reconstruct the depth‐velocity model along them. This, in turn, allows image‐ray migration, namely to map time‐migrated reflections into depth by tracing the image ray until half of the reflection time is consumed. As known since the 1980s, image‐ray migration can be made more complete if, besides reflection time, also estimates of its first and second derivatives with respect to the time‐migration datum coordinates are available. Such information provides, in addition to the location and dip of the reflectors in depth, also an estimation of their curvature. The expressions explicitly relate geological dip and curvature to first and second derivatives of reflection time with respect to time‐migration datum coordinates. Such quantitative relationships can provide useful constraints for improved construction of reflectors at depth in the presence of uncertainty. Furthermore, the results of image‐ray migration can be used to verify and improve time‐migration algorithms and can therefore be considered complementary to those of normal‐ray migration. So far, image‐ray migration algorithms have been restricted to layered models with isotropic smooth velocities within the layers. Using the methodology of surface‐to‐surface paraxial matrices, we obtain a natural extension to smooth or layered anisotropic media.  相似文献   
182.
Depth conversion of selected seismic reflections is a valuable procedure to position key reflectors in depth in a process of constructing or refining a depth-velocity model. The most widespread example of such procedure is the so-called map migration, in which normal-incidence, zero-offset (stacked) seismic data are employed. Since the late seventies and early eighties, under the assumption of an isotropic velocity model, map migration algorithms have been devised to convert traveltime and its first and second derivatives into reflector position, dip and curvatures in depth. In this work we revisit map migration to improve the existing algorithms in the following accounts: (a) We allow for fully anisotropic media; (b) In contrast to simple planar measurement surface, arbitrary topography is allowed, thus enlarging the algorithms applicability and (c) Derivations and results are much simplified upon the use of the methodology of surface-to-surface paraxial matrices.  相似文献   
183.
184.
Well-preserved pillow lavas in the uppermost part of the Early Archean volcanic sequence of the Hooggenoeg Formation in the Barberton Greenstone Belt exhibit pronounced flow banding. The banding is defined by mm to several cm thick alternations of pale green and a dark green, conspicuously variolitic variety of aphyric metabasalt. Concentrations of relatively immobile TiO2, Al2O3 and Cr in both varieties of lava are basaltic. Compositional differences between bands and variations in the lavas in general have been modified by alteration, but indicate mingling of two different basalts, one richer in TiO2, Al2O3, MgO, FeOt and probably Ni and Cr than the other, as the cause of the banding. The occurrence in certain pillows of blebs of dark metabasalt enclosed in pale green metabasalt, as well as cores of faintly banded or massive dark metabasalt, suggest that breakup into drops and slugs in the feeder channel to the lava flow initiated mingling. The inhomogeneous mixture was subsequently stretched and folded together during laminar shear flow through tubular pillows, while diffusion between bands led to partial homogenisation. The most common internal pattern defined by the flow banding in pillows is concentric. In some pillows the banding defines curious mushroom-like structures, commonly cored by dark, variolitic metabasalt, which we interpret as the result of secondary lateral flow due to counter-rotating, transverse (Dean) vortices induced by the axial flow of lava towards the flow front through bends, generally downward, in the tubular pillows. Other pillows exhibit weakly-banded or massive, dark, variolitic cores that are continuous with wedge-shaped apophyses and veins that intrude the flow banded carapace. These cores represent the flow of hotter and less viscous slugs of the dark lava type into cooled and stiffened pillows.  相似文献   
185.
We used a series of experiments to determine whether stable carbon isotope analysis of modern and fossil larval head capsules of chironomids allowed identification of their dietary carbon source. Our main focus was to assess whether carbon from naturally 13C-depleted methane-oxidizing bacteria (MOB) can be traced in chironomid cuticles using stable carbon isotope analysis. We first showed that a minimum sample weight of ~20 μg was required for our equipment to determine head capsule δ13C with a standard deviation of 0.5‰. Such a small minimum sample weight allows taxon-specific δ13C analyses at a precision sufficient to differentiate whether head capsules consist mainly of carbon derived from MOB or from other food sources commonly encountered in lake ecosystems. We then tested the effect of different chemical pre-treatments that are commonly used for sediment processing on δ13C measurements on head capsules. Processing with 10% KOH (2 h), 10% HCl (2 h), or 40% HF (18 h) showed no detectable effect on δ13C, whereas a combination of boiling, accelerated solvent extraction and heavy chemical oxidation resulted in a small (0.2‰) but statistically significant decrease in δ13C values. Using culturing experiments with MOB grown on 13C-labelled methane, we demonstrated that methanogenic carbon is transferred not only into the larval tissue, but also into chironomid head capsules. Taxon-specific δ13C of fossil chironomid head capsules from different lake sediments was analyzed. δ13C of head capsules generally ranged from −28 to −25.8‰, but in some instances we observed δ13C values as low as −36.9 to −31.5‰, suggesting that carbon from MOB is traceable in fossil and subfossil chironomid remains. We demonstrate that stable carbon isotope analyses of fossil chironomid head capsules can give insights into dietary links and carbon cycling in benthic food webs in the past and that the method has the potential to reconstruct the importance of MOB in the palaeo-diet of chironomid larvae and, indirectly, to infer past changes in methane flux at the sediment water interface in lakes.  相似文献   
186.
The East European Platform is underlain by Archaean and Proterozoic complexes of the East European Craton. In the southwest these are locally exposed in the Ukrainian Shield and the Voronezh Massif on either side of the ca. 2000 km long ESE-striking late Palaeozoic Pripyat–Dniepr–Donets rift. Evaluation with Landsat imagery of 1 : 1,000,000 scale published maps of the Precambrian complexes [Zaritsky, A.I., Galetsky, L.S. (Eds.), 1992. Geology and Metallogeny of the Southwest of the East-European Platform Map Series, 1 : 1,000,000, Ukrainian State Committee on Geology and Utilization of Mineral Resources, Kiev.] is largely obstructed by a cover of post-Palaeozoic sediments and soils of variable thickness. This obstruction is aggravated by an almost continuous patchwork of farmlands. However, analysis of the current drainage patterns in the Dniepr River basin and surrounding regions reveals a spatial coincidence of numerous stream courses and watersheds with previously inferred steep, transcrustal discontinuities of most probably Precambrian age.Transcrustal dislocations constituted important pathways for heat and fluids as is indicated by the distribution of a large proportion of assumed Early Proterozoic hydrothermal iron and gold deposits along them. This distribution is underpinned by the spatial coincidence of mineralization and elongate areas of highly irregular magnetization attributed to uneven distribution of hydrothermal magnetite in banded iron formation. In view of the extent of these dislocations, both vertically and laterally, the generation of hydrothermal fluid flow, emplacement of mantle-sourced magma and associated mineral potential away from banded iron formation complexes is likely. A second group of gold deposits, of Archaean age, is known to occur in association with still recognizable volcanic edifices in greenstone complexes. It is not known if and to what extent such Archaean gold deposits are related to these major transcrustal discontinuities. The kinematics and dynamics of these dislocations and pathways appear largely unknown and deserve high-priority investigation. The geological longevity of the transcrustal dislocation framework till the present day inferred from the current drainage systems is corroborated, however, by repeated regional topographical levelling surveys.  相似文献   
187.
188.
189.
There is a paucity of data and insight in the mechanisms of, and controls on flow separation and recirculation at natural sharply‐curved river bends. Herein we report on successful laboratory experiments that elucidate flow structure in one constant‐width bend and a second bend with an outer‐bank widening. The experiments were performed with both a flat immobile gravel bed and mobile sand bed with dominant bedload sediment transport. In the constant‐width bend with immobile bed, a zone of mainly horizontal flow separation (vertical rotational axis) formed at the inner bank that did not contain detectable flow recirculation, and an outer‐bank cell of secondary flow with streamwise oriented rotational axis. Surprisingly, the bend with widening at the outer bank and immobile bed did not lead to a transverse expansion of the flow. Rather, flow in the outer‐bank widening weakly recirculated around a vertical axis and hardly interacted with the inner part of the bend, which behaved as a constant‐width bend. In the mobile bed experiment, downstream of the bend apex a pronounced depositional bar developed at the inside of the bend and pronounced scour occurred at the outside. Moreover the deformed bed promoted flow separation over the bar, including return currents. In the constant‐width bend, the topographic steering impeded the generation of an outer‐bank cell of secondary flow. In the bend with outer‐bank widening, the topographic steering induced an outward expansion of the flow, whereby the major part of the discharge was conveyed in the central part of the widening section. Flow in the outer‐bank widening was highly three dimensional and included return currents near the bottom. In conclusion, the experiments elucidated three distinct processes of flow separation common in sharp bends: flow separation at the inner bank, an outer‐bank cell of secondary flow, and flow separation and recirculation in an outer‐bank widening. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
190.
Base metal–Ag mineralisation at Dikulushi and in other deposits on the Kundelungu Plateau (Democratic Republic of Congo) developed during two episodes. Subeconomic Cu–Pb–Zn–Fe polysulphide ores were generated during the Lufilian Orogeny (c. 520 Ma ago) in a set of E–W- and NE–SW-oriented faults. Their lead has a relatively unradiogenic and internally inhomogeneous isotopic composition (206Pb/204Pb = 18.07–18.49), most likely generated by mixing of Pb from isotopically heterogeneous clastic sources. These sulphides were remobilised and enriched after the Lufilian Orogeny, along reactivated and newly formed NE–SW-oriented faults into a chalcocite-dominated Cu–Ag mineralisation of high economic interest. The chalcocite samples contain only trace amounts of lead and show mostly radiogenic Pb isotope signatures that fall along a linear trend in the 207Pb/204Pb vs. 206Pb/204Pb diagram (206Pb/204Pb = 18.66–23.65; 207Pb/204Pb = 15.72–16.02). These anomalous characteristics reflect a two-stage evolution involving admixture of both radiogenic lead and uranium during a young fluid event possibly c. 100 Ma ago. The Pb isotope systematics of local host rocks to mineralisation also indicate some comparable young disturbance of their U–Th–Pb systems, related to the same event. They could have provided Pb with sufficiently radiogenic compositions that was added to less radiogenic Pb remobilised from precursor Cu–Pb–Zn–Fe polysulphides, whereas the U most likely originated from external sources. Local metal sources are also suggested by the 208Pb/204Pb–206Pb/204Pb systematics of combined ore and rock lead, which indicate a pronounced and diversified lithological control of the immediate host rocks on the chalcocite-dominated Cu–Ag ores. The Pb isotope systematics of polysulphide mineralisation on the Kundelungu Plateau clearly record a diachronous evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号