首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   17篇
  国内免费   3篇
测绘学   5篇
大气科学   11篇
地球物理   57篇
地质学   63篇
海洋学   16篇
天文学   13篇
综合类   1篇
自然地理   26篇
  2023年   1篇
  2021年   6篇
  2020年   9篇
  2019年   12篇
  2018年   5篇
  2017年   5篇
  2016年   10篇
  2015年   6篇
  2014年   7篇
  2013年   9篇
  2012年   7篇
  2011年   12篇
  2010年   17篇
  2009年   16篇
  2008年   9篇
  2007年   5篇
  2006年   9篇
  2005年   9篇
  2004年   4篇
  2003年   6篇
  2002年   8篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   5篇
  1993年   1篇
  1991年   1篇
  1982年   1篇
  1978年   2篇
  1975年   1篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
121.
Sulfur isotope compositions of pumice and adsorbed volatiles on ash from the first historical eruption of Anatahan volcano (Mariana arc) are presented in order to constrain the sources of sulfur erupted during the period 10-21 May, 2003. The isotopic composition of S extracted from erupted pumice has a narrow range, from δ34SV-CDT +2.6‰ to +3.2‰, while the composition of sulfur adsorbed onto ash has a larger range (+2.8‰ to +5.3‰). Fractionation modeling for closed and open system scenarios suggests that degassing of SO2 raised the δ34SV-CDT value of S dissolved in the melt from an initial composition of between +1.6‰ and +2.6‰ for closed-system degassing, or between −0.5‰ and +1.5‰ for open-system degassing, however closed-system degassing is the preferred model. The calculated values for the initial composition of the magma represent a MORB-like (δ34SV-CDT ∼ 0‰) mantle source with limited contamination by subducted seawater sulfate (δ34SV-CDT +21‰). Modeling also suggests that the δ34SV-CDT value of SO2 gas in closed-system equilibrium with the degassed magma was between +0.9‰ and +2.5‰. The δ34SV-CDT value of sulfate adsorbed onto ash in the eruption plume (+2.8‰ to +5.1‰) is consistent with sulfate formation by oxidation of magmatic SO2 in the eruption column. The sulfur isotope composition of sulfate adsorbed to ash changes from lower δ34S values for ash erupted early in the eruption to higher δ34S values for ash erupted later in the eruption. We interpret the temporal/stratigraphic change in sulfate isotopic composition to primarily reflect a change in the isotopic composition of magmatic SO2 released from the progressively degassing magma and is attributed to the expulsion of an accumulated gas phase at the beginning of the eruption. More efficient oxidation of magmatic SO2 gas to sulfate in the early water-rich eruption plume probably contributed to the change in S isotope compositions observed in the ash leachates.  相似文献   
122.
The early Neoproterozoic Morar Group in northern Scotland forms the lower part of the Moine Supergroup, deformed and metamorphosed within the Precambrian Knoydartian and Lower Palaeozoic orogenies. It has remained uncertain whether it was deposited in a shallow-marine ‘failed rift’ basin within Rodinia or a foreland basin on the margin of the Grenville orogen, which is important to determine for tectonic reconstructions. In that context, we assess the sedimentology, depositional environment and tectonic setting of the middle part of the Morar Group in the Fannich Mountains. A ca. 4–6 km thick fining-upward facies succession contains three psammite dominated lithofacies (LF): LF1, at the base, contains amalgamated and multi-storey sets of trough and tabular cross beds, which passes upwards into LF2 consisting of trough and tabular cross-bedded units arranged in coarsening and fining-upward sequences with minor pelitic rocks. The stratigraphically highest lithofacies, LF3, contains finer and more complex coarsening-upward packages of rhythmically interbedded pelite and psammite. Palaeoflow develops from broadly unimodal NW–NE flow in LF1, to weakly bimodal NW–SE flow in LF3. The data indicate that this part of the Morar Group records deposition in a distal fluvial braidplain to tidally influenced shallow-marine setting. All facies and palaeocurrent transitions are gradual and occur systematically over many hundreds of metres vertically; such characteristics are incompatible with a rift-basin setting. We suggest that, instead, deposition occurred in a transition between a foreland basin to the Grenville orogen and a marine basin associated with the Asgard Sea between Baltica and Laurentia.  相似文献   
123.
http://www.sciencedirect.com/science/article/pii/S1674987114000243   总被引:2,自引:0,他引:2  
We combine a geological, geochemical and tectonic dataset from 118 ophiolite complexes of the major global Phanerozoic orogenic belts with similar datasets of ophiolites from 111 Precambrian greenstone belts to construct an overview of oceanic crust generation over 4 billion years. Geochemical discrimi- nation systematics built on immobile trace elements reveal that the basaltic units of the Phanerozoic ophiolites are dominantly subduction-related (75%), linked to backarc processes and characterized by a strong MORB component, similar to ophiolites in Precambrian greenstone sequences (85%). The remaining 25% Phanerozoic subduction-unrelated ophiolites are mainly (74%) of Mid-Ocean-Ridge type (MORB type), in contrast to the equal proportion of RiftlContinental Margin, Plume, and MORB type ophiolites in the Precambrian greenstone belts. Throughout the Phanerozoic there are large geochemical variations in major and trace elements, but for average element values calculated in 5 bins of 100 million year intervals there are no obvious secular trends. By contrast, basaltic units in the ophiolites of the Precambrian greenstones (calculated in 12 bins of 250 million years intervals), starting in late Paleo- to early Mesoproterozoic (ca. 2.0-1.8 Ga), exhibit an apparent decrease in the average values of incom- patible elements such as Ti, P, Zr, Y and Nb, and an increase in the compatible elements Ni and Cr with deeper time to the end of the Archean and into the Hadean. These changes can be attributed to decreasing degrees of partial melting of the upper mantle from HadeanJArchean to Present. The onset of geochemical changes coincide with the timing of detectible changes in the structural architecture of the ophiolites such as greater volumes of gabbro and more common sheeted dyke complexes, and lesser occurrences of ocelli (varioles) in the pillow lavas in ophiolites younger than 2 Ga. The global data from the Precambrian ophiolites, representative of nearly 50% of all known worldwide greenston  相似文献   
124.
The Coastal Storm Modeling System (CoSMoS) applies a predominantly deterministic framework to make detailed predictions (meter scale) of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales (100s of kilometers). CoSMoS was developed for hindcast studies, operational applications (i.e., nowcasts and multiday forecasts), and future climate scenarios (i.e., sea-level rise + storms) to provide emergency responders and coastal planners with critical storm hazards information that may be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. The prototype system, developed for the California coast, uses the global WAVEWATCH III wave model, the TOPEX/Poseidon satellite altimetry-based global tide model, and atmospheric-forcing data from either the US National Weather Service (operational mode) or Global Climate Models (future climate mode), to determine regional wave and water-level boundary conditions. These physical processes are dynamically downscaled using a series of nested Delft3D-WAVE (SWAN) and Delft3D-FLOW (FLOW) models and linked at the coast to tightly spaced XBeach (eXtreme Beach) cross-shore profile models and a Bayesian probabilistic cliff failure model. Hindcast testing demonstrates that, despite uncertainties in preexisting beach morphology over the ~500 km alongshore extent of the pilot study area, CoSMoS effectively identifies discrete sections of the coast (100s of meters) that are vulnerable to coastal hazards under a range of current and future oceanographic forcing conditions, and is therefore an effective tool for operational and future climate scenario planning.  相似文献   
125.
We investigate the influence of scattering and geometry on the attenuation curve in disc galaxies. We investigate both qualitatively and quantitatively which errors are made by either neglecting or approximating scattering, and which uncertainties are introduced as a result of a simplification of the star–dust geometry. We find that the magnitude of these errors depends on the inclination of the galaxy and, in particular, that, for face-on galaxies, the errors due to improper treatment of scattering dominate those due to imprecise star–dust geometry. Therefore we argue that, in all methods aimed at determining the opacity of disc galaxies, scattering should be taken into account in a proper way.  相似文献   
126.
127.
128.
129.
130.
Seismic reflection data reveal prominent bottom-simulating reflections (BSRs) within the relatively young (<0.78 Ma) sediments along the West Svalbard continental margin. The potential hydrate occurrence zone covers an area of c. 1600 km2. The hydrate accumulation zone is bound by structural/tectonic features (Knipovich Ridge, Molloy Transform Fault, Vestnesa Ridge) and the presence of glacigenic debris lobes inhibiting hydrate formation upslope. The thickness of the gas-zone underneath the BSR varies laterally, and reaches a maximum of c. 150 ms. Using the BSR as an in-situ temperature proxy, geothermal gradients increase gradually from 70 to 115 °C km−1 towards the Molloy Transform Fault. Anomalies only occur in the immediate vicinity of normal faults, where the BSR shoals, indicating near-vertical heat/fluid flow within the fault zones. Amplitude analyses suggest that sub-horizontal fluid migration also takes place along the stratigraphy. As the faults are related to the northwards propagation of the Knipovich Ridge, long-term disturbance of hydrate stability appears related to incipient rifting processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号