首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29306篇
  免费   1132篇
  国内免费   1944篇
测绘学   1589篇
大气科学   3103篇
地球物理   5930篇
地质学   13996篇
海洋学   1436篇
天文学   1963篇
综合类   2556篇
自然地理   1809篇
  2024年   33篇
  2023年   103篇
  2022年   238篇
  2021年   289篇
  2020年   232篇
  2019年   254篇
  2018年   4980篇
  2017年   4250篇
  2016年   2838篇
  2015年   491篇
  2014年   413篇
  2013年   329篇
  2012年   1274篇
  2011年   2986篇
  2010年   2282篇
  2009年   2577篇
  2008年   2115篇
  2007年   2578篇
  2006年   236篇
  2005年   375篇
  2004年   534篇
  2003年   518篇
  2002年   373篇
  2001年   175篇
  2000年   215篇
  1999年   255篇
  1998年   204篇
  1997年   188篇
  1996年   177篇
  1995年   158篇
  1994年   110篇
  1993年   128篇
  1992年   81篇
  1991年   63篇
  1990年   30篇
  1989年   56篇
  1988年   45篇
  1987年   25篇
  1986年   17篇
  1985年   17篇
  1984年   18篇
  1983年   8篇
  1982年   14篇
  1981年   29篇
  1980年   28篇
  1979年   5篇
  1978年   5篇
  1976年   8篇
  1969年   3篇
  1958年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Efficiency in solving the Saint-Venant equations for watershed rainfall-runoff routing is important in flood hydrology. This paper presents a high-efficiency numerical solution of one-dimensional dynamic wave equations (HEDWE) for watershed rainfall-runoff routing, in which the full momentum equation is written as a quadratic equation with only one unknown variable Q, water depth is derived from the continuity equation using the two-step predictor-corrector method, and the discrete scheme is the explicit upwind scheme. The results of numerical tests showed the HEDWE approach has several major advantages. 1) It is a stable numerical method, even for an initially dry area. 2) Its computational efficiency is higher than 4.76E+05 times/s. 3) It can be used for overland flow, river flow, and combinations thereof. The primary disadvantages of the HEDWE approach are its unsuitability for rapidly varying flow, such as dam-break floods.  相似文献   
42.
Coal and gas outburst disasters in coal seams are becoming more serious as coal mines extend deeper underground in China. Furthermore, the protective coal seam mining technology featured by economic efficiency has been proven to be the most effective and widely applied method for the prevention of coal and gas outburst disasters. However, the determinations of the protective area coal and gas outburst prevention in a pressure-relief boundary area are fundamental issues that research should be focused on. The technical method for determining stress distribution in pressure-relief boundary area during protective coal seam mining is put forward in this paper. The method is based on a stress-seepage coupled relationship within a gas-containing coal seam. The method includes complex lab experiments and on-site measurements at the Qingdong Coal Mine. The final data illustrate that the permeability and vertical stress in the pressure-relief boundary area of the coal sample form a negative exponential function relationship. Additionally, the permeability of the coal sample within the abovementioned area is significantly different compared with that located at the center of the pressure-relief area. In the pressure-relief boundary area, the gas pressure distribution gradient is 0.0375 MPa/m, while the vertical stress distribution gradient registers 0.56 MPa/m. Under this condition, coal and gas outburst disasters are prone to be triggered. Therefore, effective precautions against coal and gas outburst disasters can be put forward in accordance with stress distribution characteristics within the abovementioned “boundary area.”  相似文献   
43.
The chemical characteristics, formation and natural attenuation of pollutants in the coal acid mine drainage (AMD) at Xingren coalfield, Southwest China, are discussed in this paper based on the results of a geochemical investigation as well as geological and hydrogeological background information. The chemical composition of the AMD is controlled by the dissolution of sulfide minerals in the coal seam, the initial composition of the groundwater and the water–rock interaction. The AMD is characterized by high sulfate concentrations, high levels of dissolved metals (Fe, Al, Mn, etc.) and low pH values. Ca2+ and SO4 2− are the dominant cation and anion in the AMD, respectively, while Ca2+ and HCO3 are present at significant levels in background water and surface water after the drainage leaves the mine site. The pH and alkalinity increase asymptotically with the distance along the flow path, while concentrations of sulfate, ferrous iron, aluminum and manganese are typically controlled by the deposition of secondary minerals. Low concentrations of As and other pollutants in the surface waters of the Xingren coalfield could be due to relatively low quantities being released from coal seams, to adsorption and coprecipitation on secondary minerals in stream sediments, and to dilution by unpolluted surface recharge. Although As is not the most serious water quality problem in the Xingren region at present, it is still a potential environmental problem. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
44.
In this work we studied the accumulation of heavy metals in nine species of fish with different life and feeding habitats which are native and major commercial fish in the Baotou Urban Section of the Yellow River. The results showed that the concentration of heavy metals was significantly dependent on fish species; the pollution index of heavy metals in different species were ranked as Hemiculter leucisclus > Carassius auratus auratus > Hemibarbus maculatus > Megalobrama amblycephala > Abbottina rivularis > Cyprinus carpio > Squaliobarbus curriculus > Perccottus glehni > Saurogobio dabryi. Product–moment correlation coefficients among the metal pairs Pb–Zn, Cu–Cd, Cu–Zn, Cu–Pb, Pb–Cd, and Zn–Cd revealed there was no competitions between metals in each tissue. Correlations between heavy metal concentrations and fish length or weight indicated that accumulation of the heavy metals by the different fish species was related to their surrounding environments and their life and feeding habitats. According to the mean bioconcentration factors (BCFs), the heavy metal concentrations in these nine species were ranked Zn ≫ Cu > Cd ≈ Pb. In this work, the bioaccumulation factors (BAFs) were developed by using the sum of exchangeable and bound-to-carbonate heavy metals as Cs values. It was found that BAFs better reveal the accumulation characteristics of the heavy metals in the fish, which might provide an effective method for assessing bioaccumulation of heavy metals.  相似文献   
45.
New geochronological U-Pb (LA-ICP-MS) zircon data and geochemical analyses from the Variscan orthogneisses and metavolcanic rocks in the western Tauern window are presented and used to reconstruct the pre-Alpine evolution of this area. The late- and post-Variscan stage in the Tauern window was characterised by distinct magmatic pulses accompanied by the formation of volcano-sedimentary basins. The magmatic activity started in the Visean (335.4 ± 1.5 Ma) with the intrusion of a K-rich, durbachitic biotite-granite (protolith of the Ahorn gneiss). Following a period of exhumation and erosion, Westfalian–Stefanian volcanics were deposited (Grierkar meta-rhyodacite: 309.8 ± 1.5 Ma; Venntal meta-rhyolite: 304.0 ± 3.0 Ma). A renewed magmatic pulse occurred in the Early Permian, producing large volumes of tonalites and granodiorites (Tux meta-granodiorite: 292.1 ± 1.9 Ma). The youngest magmatism is characterised by pyroclastic and tuffitic deposits (Pfitsch meta-rhyolite: 280.5 ± 2.6 Ma; Schönach valley meta-andesite: 279.0 ± 4.8 Ma). This volcanism was probably related to crustal extensional faulting within an intra-continental graben and horst setting, asthenospheric upwelling and heat flow increase due to the onset of the Permian rifting. The Permo-Triassic peneplanation and subsidence is documented by shallow marine and evaporitic deposits. Probably in the Middle Jurassic times, the area was flooded and in the Late Jurassic the whole area was covered by limestones, representing post-rift sediments on the southern European continental margin.  相似文献   
46.
We show in this short note that the method of singular spectrum analysis (SSA) is able to clearly extract a strong, clean, and clear component from the longest available sunspot (International Sunspot Number, ISN) time series (1700?–?2015) that cannot be an artifact of the method and that can be safely identified as the Gleissberg cycle. This is not a small component, as it accounts for 13% of the total variance of the total original signal. Almost three and a half clear Gleissberg cycles are identified in the sunspot number series. Four extended solar minima (XSM) are determined by SSA, the latest around 2000 (Cycle 23/24 minimum). Several authors have argued in favor of a double-peaked structure for the Gleissberg cycle, with one peak between 55 and 59 years and another between 88 and 97 years. We find no evidence of the former: solar activity contains an important component that has undergone clear oscillations of \(\approx90\) years over the past three centuries, with some small but systematic longer-term evolution of “instantaneous” period and amplitude. Half of the variance of solar activity on these time scales can be satisfactorily reproduced as the sum of a monotonous multi-secular increase, a \(\approx90\)-year Gleissberg cycle, and a double-peaked (\(\approx10.0\) and 11.0 years) Schwabe cycle (the sum amounts to 46% of the total variance of the signal). The Gleissberg-cycle component definitely needs to be addressed when attempting to build dynamo models of solar activity. The first SSA component offers evidence of an increasing long-term trend in sunspot numbers, which is compatible with the existence of the modern grand maximum.  相似文献   
47.
In this article we show how machine learning methods can beeffectively applied to the problem of automatically predictingstellar atmospheric parameters from spectral information, a veryimportant problem in stellar astronomy. We apply feedforwardneural networks, Kohonen's self-organizing maps andlocally-weighted regression to predict the stellar atmosphericparameters effective temperature, surface gravity and metallicityfrom spectral indices. Our experimental results show that thethree methods are capable of predicting the parameters with verygood accuracy. Locally weighted regression gives slightly betterresults than the other methods using the original dataset asinput, while self-organizing maps outperform the other methods when significant amounts of noise are added. We also implemented a heterogeneous ensemble of predictors, combining the results given by the three algorithms. This ensemble yields better results than any of the three algorithms alone, using both the original and the noisy data.  相似文献   
48.
Ground-penetrating radar (GPR) has become an important geophysical tool which can provide a wealth of interpretive information about the vertical profile of discontinuous permafrost. A GPR investigation was conducted in October 2006 at the Nalaikh site at the southern boundary of the Siberian discontinuous permafrost region in Mongolia. GPR data were collected along four 100-m-long profiles to identify the location of the permafrost body, which included an in situ drilling borehole and analysis of temperature observations and soil water content measurements from boreholes. The GPR interpretation results indicated that the thickness of discontinuous permafrost at the study site was only 1.9–3.0 m and the permafrost is vulnerable to climate change. The soil temperature and soil water content data demonstrate the precision of GPR image interpretation. This case demonstrated that GPR is well suited for mapping the internal structure of discontinuous permafrost with relatively low soil water content.  相似文献   
49.
The spatial and temporal changes of the composition of the groundwater from the springs along the Wadi Qilt stream running from the Jerusalem–Ramallah Mountains towards the Jericho Plain is studied during the hydrological year 2006/2007. The residence time and the intensity of recharge play an important role in controlling the chemical composition of spring water which mainly depends on distance from the main recharge area. A very important factor is the oxidation of organics derived from sewage and garbage resulting in variable dissolved CO2 and associated HCO3 concentration. High CO2 yields lower pH values and thus under-saturation with respect to calcite and dolomite. Low CO2 concentrations result in over-saturation. Only at the beginning and at the end of the rainy season calcite saturation is achieved. The degradation of dissolved organic matter is a major source for increasing water hardness. Besides dissolution of carbonates dissolved species such as nitrate, chloride, and sulfate are leached from soil and aquifer rocks together with only small amounts of Mg. Mg not only originates from carbonates but also from Mg–Cl waters are leached from aquifer rocks. Leaching of Mg–Cl brines is particularly high at the beginning of the winter season and lowest at its end. Two zones of recharge are distinguishable. Zone 1 represented by Ein Fara and Ein Qilt is fed directly through the infiltration of meteoric water and surface runoff from the mountains along the eastern mountain slopes with little groundwater residence time and high flow rate. The second zone is near the western border of Jericho at the foothills, which is mainly fed by the under-groundwater flow from the eastern slopes with low surface infiltration rate. This zone shows higher groundwater residence time and slower flow rate than zone 1. Groundwater residence time and the flow rate within the aquifer systems are controlled by the geological structure of the aquifer, the amount of active recharge to the aquifer, and the recharge mechanism. The results of this study may be useful in increasing the efficiency of freshwater exploitation in the region. Some precautions, however, should be taken in future plans of artificial recharge of the aquifers or surface-water harvesting in the Wadi. Because of evaporation and associated groundwater deterioration, the runoff water should be artificially infiltrated in zones of Wadis with high storage capacity of aquifers. Natural infiltration along the Wadis lead to evaporation losses and less quality of groundwater.  相似文献   
50.
Mymensingh municipality lies in one of the most earthquake-prone areas of Bangladesh. The town was completely destroyed during the Great Indian Earthquake of 12 June 1897, for which the surface-wave magnitude was 8.1. In this study the 1897 Great Indian Earthquake was used as a scenario event for developing seismic microzonation maps for Mymensingh. For microzonation purposes SPT data from 87 boreholes were collected from different relevant organizations. To verify those data ten boreholes of depth up to 30 m were drilled. Intensity values obtained for different events were calibrated against attenuation laws to check applicability to the study area. Vibration characteristics at diverse points of the study area were estimated by employing the one-dimensional wave-propagation software SHAKE. SHAKE discretizes the soil profile into several layers and uses an iterative technique to represent the non-linear behavior of the soil by adjusting the material properties at each iteration step. The required input information includes depth, shear wave velocity, damping factor, and unit weight of each soil layer. The liquefaction resistance factor and the resulting liquefaction potential were estimated to quantify the severity of liquefaction. Quantification of secondary site effects and the weighting scheme for combining the various seismic hazards were heuristic, based on judgment and expert opinion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号