首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9192篇
  免费   2119篇
  国内免费   3226篇
测绘学   1401篇
大气科学   1726篇
地球物理   1807篇
地质学   5222篇
海洋学   1795篇
天文学   202篇
综合类   957篇
自然地理   1427篇
  2024年   94篇
  2023年   224篇
  2022年   637篇
  2021年   748篇
  2020年   559篇
  2019年   669篇
  2018年   640篇
  2017年   608篇
  2016年   576篇
  2015年   696篇
  2014年   699篇
  2013年   759篇
  2012年   832篇
  2011年   840篇
  2010年   763篇
  2009年   791篇
  2008年   742篇
  2007年   669篇
  2006年   589篇
  2005年   483篇
  2004年   319篇
  2003年   288篇
  2002年   296篇
  2001年   236篇
  2000年   170篇
  1999年   128篇
  1998年   93篇
  1997年   62篇
  1996年   40篇
  1995年   47篇
  1994年   40篇
  1993年   35篇
  1992年   27篇
  1991年   29篇
  1990年   22篇
  1989年   12篇
  1988年   10篇
  1987年   10篇
  1986年   9篇
  1985年   7篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   8篇
  1958年   3篇
  1957年   1篇
  1954年   8篇
  1937年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
浅水地震勘探对于了解近海底地质构造具有重要意义,目前已被广泛用于油气开发、近岸工程等领域。表面多次波的存在干扰了有效波信息,影响了资料品质,造成解释假象,如何有效地压制多次波,已成为浅水地震勘探中的关键问题。表面多次波衰减方法(SRME)是一种去除海面相关多次波效果较好的技术方法,但是,一般认为SRME技术并不适合于浅水区域。分析了SRME去除多次波的基本原理,并将其应用于海洋高分辨率浅水区域多次波的去除。实际处理效果表明,使用SRME技术处理后的叠加剖面多次波去除效果明显,剖面基底清楚,断面清晰。通过对SRME技术应用于浅水区域的探讨,证实了SRME技术在海洋高分辨率地震勘探浅水区域应用效果较好。  相似文献   
172.
Time series of hydrogen and oxygen stable isotope ratios (δ2H and δ18O) in rivers can be used to quantify groundwater contributions to streamflow, and timescales of catchment storage. However, these isotope hydrology techniques rely on distinct spatial or temporal patterns of δ2H and δ18O within the hydrologic cycle. In New Zealand, lack of understanding of spatial and temporal patterns of δ2H and δ18O of river water hinders development of regional and national-scale hydrological models. We measured δ2H and δ18O monthly, together with river flow rates at 58 locations across New Zealand over a two-year period. Results show: (a) general patterns of decreasing δ2H and δ18O with increasing latitude were altered by New Zealand's major mountain ranges; δ2H and δ18O were distinctly lower in rivers fed from higher elevation catchments, and in eastern rain-shadow areas of both islands; (b) river water δ2H and δ18O values were partly controlled by local catchment characteristics (catchment slope, PET, catchment elevation, and upstream lake area) that influence evaporation processes; (c) regional differences in evaporation caused the slope of the river water line (i.e., the relationship between δ2H and δ18O in river water) for the (warmer) North Island to be lower than that of the (cooler, mountain-dominated) South Island; (d) δ2H seasonal offsets (i.e., the difference between seasonal peak and mean values) for individual sites ranged from 0.50‰ to 5.07‰. Peak values of δ18O and δ2H were in late summer, but values peaked 1 month later at the South Island sites, likely due to greater snow-melt contributions to streamflow. Strong spatial differences in river water δ2H and δ18O caused by orographic rainfall effects and evaporation may inform studies of water mixing across landscapes. Generally distinct seasonal isotope cycles, despite the large catchment sizes of rivers studied, are encouraging for transit time analysis applications.  相似文献   
173.
To investigate the sources of particulate organic matter (POM) and the impact of Three Gorges Dam (TGD), two large lakes and erosion processes on determining the composition and flux of POM in low water discharge periods along the middle and lower Changjiang, suspended particulate samples were collected along the middle and lower reaches of the Changjiang (Yangtze River) in January 2008. Organic geochemistry of bulk sediment (particulate organic carbon, organic carbon to nitrogen molar ratio (C/N), stable carbon isotope (δ13C) and grain size) and biomarker of bulk sediment (lignin phenols) were measured to trace the sources of POM. The range of C/N ratios (6.4–8.9), δ13C (?24.3‰ – ?26.2‰) and lignin phenols concentration Λ8 (0.45 mg/100 mg OC‐2.00 mg/100 mg OC) of POM suggested that POM originated from the mixture of soil, plant tissue and autochthonous organic matter (OM) during the dry season. POM from lakes contained a higher portion of terrestrial OM than the mainstream, which was related to sand mining and hydropower erosion processes. A three end‐member model based on δ13C and Λ8 was performed. The results indicated that soil contributed approximately 50% of OM to the POM, which is the dominant OM source in most stations. POM composition was affected by total suspended matter (TSM) and grain size composition, and the direct OM input from two lakes and channel erosion induced OM. The lower TSM concentration in January 2008 was mainly caused by seasonal variations; the impact from the TGD in the dry season was relatively small. A box model indicated that more than 90% of the terrestrial OM transported by the Changjiang in January 2008 was from the middle and lower drainage basins. Channel erosion induced OM, and contributions from Poyang Lake were the major terrestrial OM sources in the dry season. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
174.
Characterization of spatial and temporal variability of stable isotopes (δ18O and δ2H) of surface waters is essential to interpret hydrological processes and establish modern isotope–elevation gradients across mountainous terrains. Here, we present stable isotope data for river waters across Kyrgyzstan. River water isotopes exhibit substantial spatial heterogeneity among different watersheds in Kyrgyzstan. Higher river water isotope values were found mainly in the Issyk‐Kul Lake watershed, whereas waters in the Son‐Kul Lake watershed display lower values. Results show a close δ18O–δ2H relation between river water and the local meteoric water line, implying that river water experiences little evaporative enrichment. River water from the high‐elevation regions (e.g., Naryn and Son‐Kul Lake watershed) had the most negative isotope values, implying that river water is dominated by snowmelt. Higher deuterium excess (average d = 13.9‰) in river water probably represents the isotopic signature of combined contributions from direct precipitation and glacier melt in stream discharge across Kyrgyzstan. A significant relationship between river water δ18O and elevation was observed with a vertical lapse rate of 0.13‰/100 m. These findings provide crucial information about hydrological processes across Kyrgyzstan and contribute to a better understanding of the paleoclimate/elevation reconstruction of this region.  相似文献   
175.
176.
在综合分析国内外地形变前兆研究现状的基础上,结合汶川8.0级地震前GPS、应变、重力等研究结果,提出临震前震源区域可能出现变形不动点现象。地壳变形过程中的不动点现象是临震前区域应力场进入临界状态的重要标志,是地震潜在危险区域划定的重要依据。借助不动点理论,给出汶川地震前变形不动点集合的演化,结合大区域地震活动空区与远场显著形变异常分布,探讨变形不动点现象发生的动力学背景,验证了汶川地震前地壳变形的不动点现象是大区域应力场有序运动的结果。  相似文献   
177.
The hydrology and water balance of megadunes and lakes have been investigated in the Badain Jaran Desert of China. Field observations and analyses of sand layer water content, field capacity, secondary salt content, and grain size reveal 3 types of important natural phenomenon: (a) vegetation bands on the leeward slope of the megadunes reflect the hydrological regime within the sandy vadose zone; (b) seepage, wet sand deposits, and secondary salt deposits indicate the pattern of water movement within the sandy vadose zone; (c) zones of groundwater seeps and descending springs around the lakes reflect the influence of the local topography on the hydrological regime of the megadunes. The seepage exposed on the sloping surface of the megadunes and gravity water contained within the sand layer confirm the occurrence of preferential flow within the vadose zone of the megadunes. Alternating layers of coarse and fine sand create the conditions for the formation of preferential flows. The preferential flows promote movement of water within the sand layer water that leads to deep penetration of water within the megadunes and ultimately to the recharging of groundwater and lake water. Our results indicate that a positive water balance promotes recharge of the megadunes, which depends on the high permeability of the megadune material, the shallow depth of the surface sand layer affected by evaporation, the occurrence of rainfall events exceeding 15 mm, and the sparse vegetation cover. Water balance estimates indicate that the annual water storage of the megadunes is about 7.5 mm, accounting for only 8% of annual precipitation; however, the shallow groundwater per unit area under the megadunes receives only 3.6% of annual precipitation, but it is still able to maintain a dynamic balance of the lake water. From a water budget perspective, the annual water storage in the megadunes is sufficient to serve as a recharge source for lake water, thereby enabling the long‐term persistence of the lakes. Overall, our findings demonstrate that precipitation is a significant component of the hydrological cycle in arid deserts.  相似文献   
178.
The mechanism of the disruption, both lithospheric thinning and oceanization of the commonly accepted long‐term‐stable Archaean craton, is still an open question. The available models, all imply a bottom to top process. With the construction of a 1660‐km‐long transect across the eastern North China Craton (NCC), we demonstrate that both the P‐wave velocity and density in the lowermost crust beneath the central section are significantly higher than in the corresponding parts of the south and north sections on the transect. These features are interpreted as geophysical signature of lower crustal underplating, which supplies sufficiently high gravitational potential energy to trigger lateral flow of the lower crust. This magma underplating‐triggered bilateral lower crust flow may facilitate the lithospheric thinning by means of asthenosphere upwelling and decompression melting, which infill the gap produced by the lower crust flow. The underplating‐triggered lower crustal flow can provide an alternative mechanism to explain the NCC lithosphere disruption, which highlights the crustal feedback to Archaean lithosphere disruption, from top to bottom.  相似文献   
179.
蔡武  饶菁 《测绘》2016,(4):151-154
蒙华铁路洞庭湖大桥是世界最大跨度的三塔铁路斜拉桥,对大桥主塔的测量精度要求极高。本文主要介绍了蒙华铁路洞庭湖三塔斜拉桥主塔的施工测量控制技术,针对斜拉桥塔座、塔柱、索导管等关键结构的控制测量,结合洞庭湖大桥的工程施工特点进行研究,并对三维极坐标放样及全站仪天顶测距法进行精度分析。  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号