首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   401篇
  免费   54篇
  国内免费   433篇
测绘学   8篇
大气科学   131篇
地球物理   187篇
地质学   337篇
海洋学   90篇
天文学   15篇
综合类   90篇
自然地理   30篇
  2024年   18篇
  2023年   57篇
  2022年   44篇
  2021年   37篇
  2020年   35篇
  2019年   37篇
  2018年   19篇
  2017年   27篇
  2016年   15篇
  2015年   39篇
  2014年   68篇
  2013年   56篇
  2012年   34篇
  2011年   37篇
  2010年   24篇
  2009年   22篇
  2008年   31篇
  2007年   46篇
  2006年   44篇
  2005年   36篇
  2004年   28篇
  2003年   20篇
  2002年   22篇
  2001年   14篇
  2000年   20篇
  1999年   5篇
  1998年   12篇
  1997年   3篇
  1996年   2篇
  1995年   6篇
  1994年   4篇
  1993年   8篇
  1992年   6篇
  1991年   1篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1938年   1篇
排序方式: 共有888条查询结果,搜索用时 15 毫秒
11.
This paper designs three quasi-geostrophic barotropic models with a radial/horizontal grid length being 2 kin,one in the polar coordinates,one on a stationary typhoon circulation condition and another on a non-stationary typhoon circulation condition in the Cartesian coordinates,to investigate the effects of azimuthal and radial linear advections,and nonlinear advection on the inward propagation of mesoscale vorticity and the changes of typhoon intensity.Results show that the azimuthal linear advection may result in the formation of spiral vorticity bands;the radial linear advection in a certain parameter set is able to transfer vorticity inwards,leading to a slight enhancement of typhoon;the nonlinear advection of perturbation vorticity on a stationary typhoon circulation condition may transfer more vorticities inwards,thus resulting in a distinct enhancement of typhoon;and the nonlinear advection on a non-stationary typhoon circulation condition possesses duality,i.e.on the one hand,the advection increases the vorticity of inward propagation,thus favorable to the intensification of typhoon,and on the other hand,in the inward propagation process of vorticity the originally concentric and axisymmetric structure of typhoon basic flow is damaged,and a complex flow pattern forms,which in turn tends to weaken the circulation of typhoon.At last the paper discusses the possible applications of those results in typhoon intensity prediction.  相似文献   
12.
In the construction of Qinghai-Tibet railway,to avoid diseases caused by frost heave and thaw col-lapse of frozen ground,besides the normal bridges over the rivers,a lot of dry bridge structures have been built to replace subgrade in the regions of high tem-perature and high ice content frozen soil.So,the problems on forming mechanism of bearing capacity of pile foundation in cold regions already become one of hot spot problems in frozen soil engineering.Freezing force and frost heave force ar…  相似文献   
13.
Systematic microthermometric measurements of fluid inclusions in the PGE-polymetallic deposits hosted in the Lower Cambrian black rock series in southern China were performed, and the results suggest: (1) there exist two types of fluid inclusions. TypeⅠis of NaCl-H2O system with low-medium salinity, and its homogenization temperatures (Th) and salinities are 106.9- 286.4℃ and ( 0.8- 21.8) wt%NaCl eq. respectively; TypeⅡ is of CaCl2-NaCl-H2O system with medium-high salinities, and its homogenization temperatures and salinities range from 120.1℃ to 269.6℃ and ( 11.4- 31.4) wt%NaCl eq., respectively. The typeⅡ fluid inclusions have been discovered for the first time in this kind of deposits; (2) two generations of ore-forming fluids were recognized. Characteristics of fluid inclusions in the PGE-polymetallic ores and carbonate-quartz stockworks in the underlying phosphorites are almost of no difference, they may represent ore-forming fluids at the main metallogenic stage. The peak value of homogenization temperature of those fluid inclusions is about 170℃, while their salinities possess a remarkable bimodal distribution pattern with two peak values of (27-31) wt%NaCl eq. and (4-6) wt%NaCl eq. On the contrary, fluid inclusions in the carbonate-quartz veins in the hanging wall may represent ore-forming fluids at the post-metallogenetic stage. The homogenization temperatures and the peak values of salinities are mostly 130-170℃ and (12-14) wt%NaCl eq., respectively; (3) nobel gas isotopic composition analyses in combination with the microthermometric measurements of fluid inclusions suggest that the ore-forming fluids at the main metallogenetic stage were probably derived from mixing of basinal hot brines with the CaCl2-NaCl-H2O system and seawater with the NaCl-H2O system; (4) in the Early Cambrian, the basinal hot brines were trapped in the Caledonian basins, which were distributed along the southern margin of the Yangtze Craton, and where giant thick sediments were accumulated, and expelled and migrated laterally along the strata because of the pressure caused by overlying sediments. The basinal hot brines absorbed Ni, Mo, V, PGE from the surrounding rocks and were transformed into ore-bearing hydrothermal fluids with the CaCl2-NaCl-H2O system and medium-high salinities, then ascended along faults and mixed with seawater of the NaCl-H2O system, and finally PGE-polymetallic deposits or occurrences were formed in the black rock series.  相似文献   
14.
The spatial distribution of summer precipitation anomalies over eastern China often shows a dipole pattern, with antiphased precipitation anomalies between southern China and northern China, known as the “southern flooding and northern drought”(SF-ND) pattern. In 2015, China experienced heavy rainfall in the south and the worst drought since 1979 in the north, which caused huge social and economic losses. Using reanalysis data, the atmospheric circulation anomalies and possible mechanisms relate...  相似文献   
15.
16.
Research on Formation Mechanisms of Hot Dry Rock Resources in China   总被引:3,自引:0,他引:3  
As an important geothermal resource, hot dry rock(HDR) reserves have been studied in many countries. HDR resources in China have huge capacity and have become one of the most important resources for the potential replacement of fossil fuels. However, HDR resources are difficult to develop and utilise. Technologies for use with HDR, such as high–temperature drilling, reservoir characterisation, reservoir fracturing, microseismic monitoring and high–temperature power stations, originate from the field of oil and drilling. Addressing how to take advantage of these developed technologies is a key factor in the development of HDR reserves. Based on the thermal crustal structure in China, HDR resources can be divided into four types: high radioactive heat production, sedimentary basin, modern volcano and the inner–plate active tectonic belt. The prospective regions of HDR resources are located in South Tibet, West Yunnan, the southeast coast of China, Bohai Rim, Songliao Basin and Guanzhong Basin. The related essential technologies are relatively mature, and the prospect of HDR power generation is promising. Therefore, analysing the formation mechanisms of HDR resources and promoting the transformation of technological achievements, large–scale development and the utilisation of HDR resources can be achieved in China.  相似文献   
17.
Scientific research and productive practice for earth history are inseparable from the accurate stratigraphic framework and time framework. Establishing the globally unified, precise and reliable chronostratigraphic series and geological time series is the major goal of the International Commission on Stratigraphy(ICS). Under the leadership of the ICS, the countries around the world have carried out research on the Global Standard Stratotype-section and Points(GSSPs) for the boundaries of chronostratigraphic systems. In the current International Chronostratigraphic Chart(ICC), 65 GSSPs have been erected in the Phanerozoic Eonothem, and one has yet been erected in the Precambrian Eonothem. Based on the progress of research on stratigraphy especially that from its subcommissions, the ICS is constantly revising the ICC, and will publish a new International Stratigraphic Guide in 2020. After continual efforts and broad international cooperation of Chinese stratigraphers, 10 GSSPs within the Phanerozoic Eonothem have been approved and ratified to erect in China by the ICS and IUGS. To establish the standards for stratigraphic division and correlation of China, with the support from the Ministry of Science and Technology, the National Natural Science Foundation of China and the China Geological Survey, Chinese stratigraphers have carried out research on the establishment of Stages in China. A total of 102 stages have been defined in the "Regional Chronostratigraphic Chart of China(geologic time)", in which 59 stages were studied in depth. In 2014, the "Stratigraphic Chart of China" was compiled, with the essential contents as follows: the correlation between international chronostratigraphy and regional chronostratigraphy of China(geologic time), the distributive status of lithostratigraphy, the characteristics of geological ages, the biostratigraphic sequence, the magnetostratigraphy, the geological events and eustatic sea-level change during every geological stage. The "Stratigraphical Guide of China and its Explanation(2014)" was also published. Chinese stratigraphers have paid much attention to stratigraphic research in south China, northeast China, north China and northwest China and they have made great achievements in special research on stratigraphy, based on the 1:1000000, 1:250000, 1:200000 and 1:50000 regional geological survey projects. Manifold new stratigraphic units were discovered and established by the regional geological surveys, which are helpful to improve the regional chronostratigraphic series of China. On the strength of the investigation in coastal and offshore areas, the status of marine strata in China has been expounded. According to the developing situation of international stratigraphy and the characteristics of Chinese stratigraphic work, the contrast relation between regional stratigraphic units of China and GSSPs will be established in the future, which will improve the application value of GSSPs and the standard of regional stratigraphic division and correlation. In addition, the study of stratigraphy of the Precambrian, terrestrial basins and orogenic belts will be strengthened, the Stratigraphic Chart of China will be improved, the typical stratigraphic sections in China will be protected and the applied study of stratigraphy in the fields of oil and gas, solid minerals, etc. will be promoted. On the ground of these actions, stratigraphic research will continue to play a great role in the social and economic development of China.  相似文献   
18.
正Objective The Shangxu gold deposit is located in the south of the middle Bangong-Nujiang suture zone in northern Tibet.The origin of this deposit as an orogenic gold deposit is debatable.The study of the Shangxu deposit has a profound implication on gold exploration in the BangongNujiang metallogenic belt and can also improve our understanding of gold mineralization in northern Tibet.  相似文献   
19.
The Yangbishan iron–tungsten deposit in the Shuangyashan area of Heilongjiang Province is located in the center of the Jiamusi Massif in northeastern China. The rare earth element and trace element compositions of the scheelite show that it formed in a reducing environment and inherited the rare earth element features of the ore-forming fluid. The geochemical characteristics of the gneissic granite associated with the tungsten mineralization show that the magma formed in this reducing environment and originated from the partial melting of metamorphosed shale that contained organic carbon and was enriched with tungsten. In addition, in situ Hf isotopic analysis of zircons from the gneissic granite indicates that they probably originated from the partial melting of a predominantly Paleo–Mesoproterozoic crustal source. According to LA-ICP-MS zircon dating, the Yangbishan orerelated gneissic granite has an Early Paleozoic crystallization age of 520.6 ± 2.8 Ma. This study, together with previous data, indicates that the massifs of northeastern China, including Erguna, Xing'an, Songliao, Jiamusi, and Khanka massifs, belonged to an orogenic belt that existed along the southern margin of the Siberian Craton during the late Pan-African period. The significant continental movements of this orogeny resulted in widespread magmatic activity in northeastern China from 530 Ma to 470 Ma under a tectonic setting that transitioned from compressional syn-collision to extensional postcollision.  相似文献   
20.
To understand the influence of the diagenetic water medium on the isotopic compositions of thermogenic coalbed gas, both hydrous and anhydrous closed-system pyrolyses were performed at temperatures of 250°C to 650°C on an herbaceous marsh peat. Compared to the results of anhydrous pyrolysis, the hydrocarbon gases generated from hydrous pyrolyses have very different hydrogen isotopic compositions. However, the carbon isotopic compositions of the hydrocarbon gases became only slightly heavier in hydrous pyrolysis, compared to that from anhydrous pyrolysis. With the progress of thermal evolution from peat to a more advanced thermal maturity of vitrinite reflectance values (Ro) of 5.5% during the pyrolysis, the difference in the average δD value increased from 52‰ to 64‰ between the hydrous pyrolysis with saltwater and anhydrous pyrolysis and increased from 18‰ to 29‰ between the hydrous pyrolysis with freshwater and anhydrous pyrolysis, respectively. The difference in the average δ13C value was only 1‰–2‰ between the hydrous and anhydrous pyrolysis. The relationships between the δD values of the generated hydrocarbon gases and Ro values as well as among δD values of the hydrocarbon gas species are established. The close relationships among these parameters suggest that the water medium had a significant effect on the hydrogen isotopic composition and a minimal effect on the carbon isotopic composition of the hydrocarbon gases. The results of these pyrolyses may provide information for the understanding of the genesis of coalbed gas from herbaceous marsh material with the participation of different diagenetic water media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号