An analysis of changes in migration patterns since World War II between inner Anatolia and eastern Anatolia in Turkey is presented. Four periods are distinguished, the exploratory period until 1950, seasonal migration until 1960, mass migration up to the present, and marriage migration from 1975 to the present. The linkages between previous and potential migrants are noted. (SUMMARY IN ENG) 相似文献
A simple analytical model of wave propagation has been developed in order to study the potential sediment transport patterns due to the action of currents and waves in the neighborhood of cylindrical structures as well inside a group of these structures. The attention is focused on the study of Trafalgar offshore windfarm, a case in which it has been necessary to analyze the flow trough porous structures in order to model fish growing-cages planned to be installed at each aerogenerator structure. The results are obtained by averaging over one period of wave in order to evaluate the net potential sediment transport. The analysis of the results reveals how the processes of wave diffraction and reflection give rise to periodic patterns of sediment transport around and between the structures. 相似文献
The Malpica–Tui complex (NW Iberian Massif) consists of a Lower Continental Unit of variably deformed and recrystallized granitoids, metasediments and sparse metabasites, overridden by an upper unit with rocks of oceanic affinities. Metamorphic minerals dated by the 40Ar/39Ar method record a coherent temporal history of progressive deformation during Variscan metamorphism and exhumation. The earliest stages of deformation (D1) under high-pressure conditions are recorded in phengitic white micas from eclogite-facies rocks at 365–370 Ma. Following this eclogite-facies peak-metamorphism, the continental slab became attached to the overriding plate at deep-crustal levels at ca. 340–350 Ma (D2). Exhumation was accompanied by pervasive deformation (D3) within the continental slab at ca. 330 Ma and major deformation (D4) in the underlying para-autochthon at 315–325 Ma. Final tectonothermal evolution included late folding, localized shearing and granitic intrusions at 280–310 Ma.
Dating of high-pressure rocks by the 40Ar/39Ar method yields ages that are synchronous with published Rb–Sr and Sm–Nd ages obtained for both the Malpica–Tui complex and its correlative, the Champtoceaux complex in the French Armorican Massif. The results indicate that phengitic white mica retains its radiogenic argon despite been subjected to relatively high temperatures (500–600 °C) for a period of 20–30 My corresponding to the time-span from the static, eclogite-facies M1 peak-metamorphism through D1-M2 eclogite-facies deformation to amphibolite-facies D2-M3. Our study provides additional evidence that under certain geological conditions (i.e., strain partitioning, fluid deficiency) argon isotope mobility is limited at high temperatures, and that 40Ar/39Ar geochronology can be a reliable method for dating high pressure metamorphism. 相似文献
To understand Phosphorus (P) sources and transport processes in the subsurface in Bwaise III Parish, Kampala, P attenuation
and adsorption capacities of soils were studied in situ and from laboratory measurements. Relationships between sorption parameters
and soil matrix properties, rates and mechanism of the adsorption process and soil P fractions were also investigated. P was
generally higher in the wet than the dry season, but for both seasons, the maximum was 5 mgP/l. P transport mechanisms appeared
to be a combination of adsorption, precipitation, leaching from the soil media and by colloids with the latter two playing
an important role in the wet season. The sorption process comprised two phases with the first stage rate constants being about
fourfold those of the second stage. The Langmuir isotherm described the sorption data well (R2 ≥ 0.95) with the second soil layer exhibiting the highest sorption maximum (Cmax) (average value 0.6 ± 0.17 mgP/gDW). The best prediction of Cmax had organic carbon, Ca, available P and soil pH. Residual P consisting mostly of organics was the main fraction in all the
layers followed by inorganic HCl-P and NaOH-P in the top and middle layers, respectively. Loosely bound P (NH4Cl-P) was the least fraction (<0.4% of total P) in all layers indicating the high binding capacity of P by the soils. The
study results suggest that P dynamics is related to Ca, Fe and organic carbon content of the soils. 相似文献
The method of analytical downward continuation has been used for solving Molodensky’s problem. This method can also be used
to reduce the surface free air anomaly to the ellipsoid for the determination of the coefficients of the spherical harmonic
expansion of the geopotential. In the reduction of airborne or satellite gradiometry data, if the sea level is chosen as reference
surface, we will encounter the problem of the analytical downward continuation of the disturbing potential into the earth,
too. The goal of this paper is to find out the topographic effect of solving Stoke’sboundary value problem (determination
of the geoid) by using the method of analytical downward continuation.
It is shown that the disturbing potential obtained by using the analytical downward continuation is different from the true
disturbing potential on the sea level mostly by a −2πGρh 2/p. This correction is important and it is very easy to compute
and add to the final results. A terrain effect (effect of the topography from the Bouguer plate) is found to be much smaller
than the correction of the Bouguer plate and can be neglected in most cases.
It is also shown that the geoid determined by using the Helmert’s second condensation (including the indirect effect) and
using the analytical downward continuation procedure (including the topographic effect) are identical. They are different
procedures and may be used in different environments, e.g., the analytical downward continuation procedure is also more convenient
for processing the aerial gravity gradient data.
A numerical test was completed in a rough mountain area, 35°<ϕ<38°, 240°<λ<243°. A digital height model in 30″×30″ point value
was used. The test indicated that the terrain effect in the test area has theRMS value ±0.2−0.3 cm for geoid. The topographic effect on the deflections of the vertical is around1 arc second. 相似文献
A zircon grain in an orthopyroxene–garnet–phlogopite–zircon–rutile-bearing xenolith from Udachnaya, Siberia, preserves a pattern of crystallographic misorientation and subgrain microstructure associated with crystal–plastic deformation. The zircon grain records significant variations in titanium (Ti) from 2.6 to 30 ppm that corresponds to a difference in calculated Ti-in-zircon temperatures of over several hundred degrees Celsius. The highest Ti concentration is measured at subgrain centres (30 ppm), and Ti is variably depleted at low-angle boundaries (down to 2.6 ppm). Variations in cathodoluminescence coincide with the deformation microstructure and indicate localised, differential enrichment of rare earth elements (REE) at low-angle boundaries. Variable enrichment of U and Th and systematic increase of Th/U from 1.61 to 3.52 occurs at low-angle boundaries. Individual SHRIMP-derived U–Pb ages from more deformed zones (mean age of 1799 ± 40, n = 22) are systematically younger than subgrain cores (mean age of 1851 ± 65 Ma, n = 7), and indicate that open system behaviour of Ti–Th–U occurred shortly after zircon growth, prior to the accumulation of significant radiogenic Pb. Modelling of trace-element diffusion distances for geologically reasonable thermal histories indicates that the observed variations are ~ 5 orders of magnitude greater than can be accounted for by volume diffusion. The data are best explained by enhanced diffusion of U, Th and Ti along deformation-related fast-diffusion pathways, such as dislocations and low-angle (< 5°) boundaries. These results indicate chemical exchange between zircon and the surrounding matrix and show that Ti-in-zircon thermometry and U–Pb geochronology from deformed zircon may not yield information relating to the conditions and timing of primary crystallisation. 相似文献