Summary The different functions of cumulative probability of fracture that can be used in the Probabilistic Strength of Materials in the case of constant uniaxial compression are described. Sound fine-grained granite was used to study volume influence by fracturing rectangular prisms, and then no noticeable influence was observed. Since this is showing that all the fracture stresses are belonging to a single set they were included in a single group that exhibited two functions of specific risk of fracture. The population with the lesser fracture stress has no critical zone while the other population does have it and a critical zone in the order of 10–6 m3 is the minimum size exhibiting a complete fracture of the specimen when the same collapses. All the statistical functions were found to be acceptable according to theX2 criterion. 相似文献
Igneous and sedimentary rocks recently dredged and cored from the steep western slope of the Beata Ridge provide important data on the composition, age and details of crustal evolution of the rock-types responsible for recorded compressional wave velocities. The sedimentary rock samples also provide new data concerning the age and depositional environment of overlying sedimentary reflectors.
The deepest (4,100 m) dredge haul contains deeply weathered coarsegrained igneous rocks. Nine other hauls, distributed between 4,000–2,300 m, contain holocrystalline basalts and diabases. The compressional wave velocity of air-dried samples of two holocrystalline basalts and a diabase at atmospheric pressure ranges from 5.0–5.6 km/sec. Sampling in depths less than 2,300 m shows that the crest of the Beata Ridge is capped by Quaternary deposits underlain by consolidated carbonate sediment of at least Middle Eocene age. The faunal assemblages of the Mid-Eocene samples are the product of normal accumulation in a shallow shelf environment.
The dredging results coupled with previously published seismic reflection and refraction data, suggest that the 5.4–5.7 km/sec crust is composed of a layer of basalt and diabase which outcrops below 2,300 m, on a fault-generated escarpment that was produced in the Late Cretaceous-Early Tertiary. The shallow shelf samples of Eocene age indicate that the Beata Ridge was higher in the Early Tertiary and has subsided subsequently to its present depth. 相似文献
Known changes in ice-flow direction during a 100-year interval have been used to evaluate how well ice-flow indicators record complex deglaciation events. At Burroughs Glacier, nunataks emerging from a thinning Neoglacial ice mass and differential ice-surface lowering caused by calving ice margins have produced major changes in ice-flow direction sincc 1892. Cross-cutting striae with angles of divergence of up to 105' reflect the past range of flow directions in the area. Striae from the oldest flow events are deepest, and striae from some late-stage flow events are missing. This may be caused by overprinting during late-stage reversals in the direction of ice movement. The orientation of flutes and surficial bullet boulders reflects the final ice-flow direction, but boulder orientations are less clustered than flute orientations. Surficial till pebble fabrics are weakly to moderately developed, but till fabrics vary with depth and record ice-flow direction changes with time. 相似文献
For many years, information on the solar mean magnetic field (SMMF) of the Sun—an important heliophysical and astrophysical parameter—was restricted to magnetographic measurements in only one spectral line, FeI λ525.02 nm. More informative observations of the Stokes-meter parameters of the SMMF were first initiated on a regular basis at the Sayan Solar Observatory. The availability of I and V data obtained simultaneously in several spectral lines has made it possible to study fundamentally new physical problems. In this paper, based on a comparison of SMMF observations in several spectral lines, we find high correlations in the data and important systematic differences in the magnetic-field strength B, which we interpret as a manifestation of kilogauss magnetic fields in fine-structure magnetic elements. Results of theoretical modeling of the SMMF strength ratios for the FeI λ525.02 nm-FeI λ524.70 nm and FeI λ630.15 nm-FeI λ630.25 nm lines are presented. The asymmetries of the V profiles of four lines near the FeI λ525.02 nm line are examined; these lines are important diagnostics for studies of small-scale dynamical processes. The Sayan Solar Observatory SMMF measurements are in good consistency with the Wilcox Solar Observatory data for 2003: for a comparison of N = 137 pairs of points in the two data sets, the correlation coefficient ρ is 0.92 for the linear regression between the datasets BWSO = 0.03(±0.05) + 0.93(±0.03)BSSO. 相似文献
In the low‐pressure, high‐temperature metamorphic rocks of western Maine, USA, staurolite porphyroblasts grew at c. 400 Ma, very late during the regional orogenesis. These porphyroblasts, which preserve straight inclusion trails with small thin‐section‐scale variation in pitch, were subsequently involved in the strain and metamorphic aureole of the c. 370 Ma Mooselookmeguntic pluton. The aureole shows a progressive fabric intensity gradient from effectively zero emplacement‐related deformation at the outer edge of the aureole ~2900 m (map distance) from the pluton margin to the development of a pervasive emplacement‐related foliation adjacent to the pluton. The development of this pervasive foliation spanned all stages of crenulation cleavage development, which are preserved at different distances from the pluton. The spread of inclusion‐trail pitches in the staurolite porphyroblasts, as measured in two‐dimensional (2‐D) thin sections, increases nonlinearly from ~16° to 75° with increasing strain in the aureole. These data provide clear evidence for rotation of the staurolite porphyroblasts relative to one another and to the developing crenulation cleavage. The data spread is qualitatively modelled for both pure and simple shear, and both solutions match the data reasonably well. The spread of inclusion‐trail orientations (40–75°) in the moderately to highly strained rocks is similar to the spread reported in several previous studies. We consider it likely that the sample‐scale spread in these previous studies is also the result of porphyroblast rotation relative to one another. However, the average inclusion‐trail orientation for a single sample may, in at least some instances, reflect the original orientation of the overgrown foliation. 相似文献
The Novaya Zemlya fold‐and‐thrust‐belt is the northern continuation of the late Palaeozoic Uralide Orogen. Little is known about its deeper structure and the basement history of the adjacent Barents and Kara shelves. Based on geological evidence and detrital zircon analysis of 28 samples from the northeastern and stratigraphically deepest part of the archipelago, we demonstrate that Cambro‐Ordovician turbidite‐dominated deposition was almost exclusively sourced from rocks consolidated during the Timanian orogeny (Timanian basement). A profound change in provenance occurred near the end of the Ordovician. Over 90% of the zircons from Silurian and about 80% from Devonian strata have ages characteristic of the Sveconorwegian Orogen, implying uplift of these rocks in the vicinity of Novaya Zemlya. The presence of Sveconorwegian and Grenvillian rocks in the high Arctic suggests revision of recent reconstructions of the Rodinia supercontinent, its break‐up and subsequent Caledonian orogeny. 相似文献
Hot spring deposits in the Roosevelt thermal area consist of opaline sinter and sintercemented alluvium. Alluvium, plutonic rocks, and amphibolite-facies gneiss have been altered by acidsulfate water to alunite and opal at the surface, and alunite, kaolinite, montmorillonite, and muscovite to a depth of 70 m. Marcasite, pyrite, chlorite, and calcite occur below the water table at about 30 m.The thermal water is dilute (ionic strength 0.1–0.2) sodium-chloride brine. The spring water now contains 10 times as much Ca, 100 times as much Mg, and up to 2.5 times as much SO4 as the deep water. Although the present day spring temperature is 25°C, the temperature was 85°C in 1950.A model for development of the observed alteration is supported by observation and irreversible mass transfer calculations. Hydrothermal fluid convectively rises along major fractures. Water cools by conduction and steam separation, and the pH rises due to carbon dioxide escape. At the surface, hydrogen and sulfate ions are produced by oxidation of H2S. The low pH water percolates downward and reacts with feldspar in the rocks to produce alunite, kaolinite, montmorillonite, and muscovite as hydrogen ion is consumed. 相似文献
Bioconcentration factors (Kbc) for petroleum hydrocarbons, PAHs, LABs and biogenic hydrocarbons in Mytilus edulis were measured in field experiments using time-integrating water samplers. Seven deployments at five sites gave lipid weight Kbcs for total hydrocarbons ranging from 0.99 × 106 to 3.1 × 106 (mean 1.6 × 106)—a narrower range than has been obtained previously. Bioconcentration factors for the PAHs were similar to those for total hydrocarbons where the major hydrocarbon source was oil. However, at other sites the factors for PAHs were an order of magnitude lower than those for petroleum and for hydrocarbons originating from algae. Compositional profiles for the linear alkyl benzenes (LABs) suggested that these compounds were assimilated primarily from the dissolved phase, despite their greater abundance on particles. 相似文献
Several recent studies have presented evidence that significant induced earthquakes occurred in a number of oil-producing regions during the early and mid-twentieth century related to either production or wastewater injection. We consider whether the 21 July 1952 Mw 7.5 Kern County earthquake might have been induced by production in the Wheeler Ridge oil field. The mainshock, which was not preceded by any significant foreshocks, occurred 98 days after the initial production of oil in Eocene strata at depths reaching 3 km, within ~1 km of the White Wolf fault (WWF). Based on this spatial and temporal proximity, we explore a potential causal relationship between the earthquake and oil production. While production would have normally be expected to have reduced pore pressure, inhibiting failure on the WWF, we present an analytical model based on industry stratigraphic data and best estimates of parameters whereby an impermeable splay fault adjacent to the main WWF could plausibly have blocked direct pore pressure effects, allowing the poroelastic stress change associated with production to destabilize the WWF, promoting initial failure. This proof-of-concept model can also account for the 98-day delay between the onset of production and the earthquake. While the earthquake clearly released stored tectonic stress, any initial perturbation on or near a major fault system can trigger a larger rupture. Our proposed mechanism provides an explanation for why significant earthquakes are not commonly induced by production in proximity to major faults. 相似文献