首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96918篇
  免费   1319篇
  国内免费   818篇
测绘学   2248篇
大气科学   6196篇
地球物理   19203篇
地质学   35183篇
海洋学   8582篇
天文学   22419篇
综合类   285篇
自然地理   4939篇
  2022年   693篇
  2021年   1171篇
  2020年   1265篇
  2019年   1358篇
  2018年   2959篇
  2017年   2777篇
  2016年   3301篇
  2015年   1714篇
  2014年   3132篇
  2013年   5157篇
  2012年   3356篇
  2011年   4391篇
  2010年   3805篇
  2009年   4835篇
  2008年   4447篇
  2007年   4438篇
  2006年   4063篇
  2005年   2952篇
  2004年   2804篇
  2003年   2643篇
  2002年   2458篇
  2001年   2329篇
  2000年   2144篇
  1999年   1663篇
  1998年   1753篇
  1997年   1719篇
  1996年   1360篇
  1995年   1404篇
  1994年   1208篇
  1993年   1082篇
  1992年   1062篇
  1991年   984篇
  1990年   1105篇
  1989年   945篇
  1988年   860篇
  1987年   1017篇
  1986年   815篇
  1985年   1090篇
  1984年   1178篇
  1983年   1096篇
  1982年   1047篇
  1981年   906篇
  1980年   866篇
  1979年   764篇
  1978年   793篇
  1977年   716篇
  1976年   670篇
  1975年   647篇
  1974年   646篇
  1973年   642篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
951.
Deep-water acoustical measurements of rainfall are compared to high-resolution ground radar observations for the first time. The measurements of underwater ambient sound were made from a subsurface mooring near Methoni, Greece, in 2004. The acoustical measurements were at 60-, 200-, 1000-, and 2000-m depths. Simultaneous ground-based polarimetric -band radar observations were made over the acoustic mooring. Comparisons show acoustic detection of rain events and storm structure that are in agreement with the radar observations. Results from a comparison between the underwater sound pressure level at different depths and the observed radar reflectivities are presented.  相似文献   
952.
Bistatic synthetic aperture radar (SAR) is an extension of traditional monostatic SAR, which increases the flexibility in designing SAR missions. We describe a scheme for the computation of integration time and azimuth coverage of bistatic SARs based on space-time diagrams. A classification of bistatic SAR configurations is introduced in terms of size and velocity on the ground of antenna footprints. Bistatic SAR regimes are also identified.  相似文献   
953.
Propagation delay due to variable tropospheric water vapor (WV) is one of the most intractable problems for radar interferometry, particularly over mountains. The WV field can be simulated by an atmospheric model, and the difference between the two fields is used to correct the radar interferogram. Here, we report our use of the U.K. Met Office Unified Model in a nested mode to produce high-resolution forecast fields for the 3-km-high Mount Etna volcano. The simulated precipitable-water field is validated against that retrieved from the Medium-Resolution Imaging Spectrometer (MERIS) radiometer on the Envisat satellite, which has a resolution of 300 m. Two case studies, one from winter (November 24, 2004) and one from summer (June 25, 2005), show that the mismatch between the model and the MERIS fields ( rms = 1.1 and 1.6 mm, respectively) is small. One of the main potential sources of error in the models is the timing of the WV field simulation. We show that long-wavelength upper tropospheric troughs of low WV could be identified in both the model output and Meteosat WV imagery for the November 24, 2004 case and used to choose the best time of model output.  相似文献   
954.
955.
The Nisyros Volcano (Greece) was monitored by satellite and ground thermal imaging during the period 2000–2002. Three night-scheduled Landsat-7 ETM+ thermal (band 6) images of Nisyros Island were processed to obtain land surface temperature. Ground temperature data were also collected during one of the satellite overpasses. Processed results involving orthorectification and 3-D atmospheric correction clearly show the existence of a thermal anomaly inside the Nisyros Caldera. This anomaly is associated mainly with the largest hydrothermal craters and has land surface temperatures 5–10 °C warmer than its surroundings. The ground temperature generally increased by about 4 °C inside the main crater over the period 2000–2002. Ground thermal images of the hydrothermal Stephanos Crater were also collected in 2002 using a portable thermal infrared camera. These images were calibrated to ground temperature data and orthorectified. A difference of about 0–2 °C was observed between the ground thermal images and the ground temperature data. The overall study demonstrates that satellite remote sensing of low-temperature fumarolic fields within calderas can provide a reliable long-term monitoring tool of dormant volcanoes that have the potential to reactivate. Similarly, a portable thermo-imager can easily be deployed for real-time monitoring using telemetric data transfer. The operational costs for both systems are relatively low for an early warning system.  相似文献   
956.
Information about the distribution of grass foliar nitrogen (N) and phosphorus (P) is important for understanding rangeland vitality and for facilitating the effective management of wildlife and livestock. Water absorption effects in the near-infrared (NIR) and shortwave-infrared (SWIR) regions pose a challenge for nutrient estimation using remote sensing. The aim of this study was to test the utility of water-removed (WR) spectra in combination with partial least-squares regression (PLSR) and stepwise multiple linear regression (SMLR) to estimate foliar N and P, compared to spectral transformation techniques such as first derivative, continuum removal and log-transformed (Log(1/R)) spectra. The study was based on a greenhouse experiment with a savanna grass species (Digitaria eriantha). Spectral measurements were made using a spectrometer. The D. eriantha was cut, dried and chemically analyzed for foliar N and P concentrations. WR spectra were determined by calculating the residual from the modelled leaf water spectra using a nonlinear spectral matching technique and observed leaf spectra. Results indicated that the WR spectra yielded a higher N retrieval accuracy than a traditional first derivative transformation (R2=0.84, RMSE = 0.28) compared to R2=0.59, RMSE = 0.45 for PLSR. Similar trends were observed for SMLR. The highest P retrieval accuracy was derived from WR spectra using SMLR (R2=0.64, RMSE = 0.067), while the traditional first derivative and continuum removal resulted in lower accuracy. Only when using PLSR did the first derivative result in a higher P retrieval accuracy (R2=0.47, RMSE = 0.07) than the WR spectra (R2=0.43, RMSE = 0.070). It was concluded that the water removal technique is a promising technique to minimize the perturbing effect of foliar water content when estimating grass nutrient concentrations.  相似文献   
957.
ITRF2008: an improved solution of the international terrestrial reference frame   总被引:15,自引:38,他引:15  
ITRF2008 is a refined version of the International Terrestrial Reference Frame based on reprocessed solutions of the four space geodetic techniques: VLBI, SLR, GPS and DORIS, spanning 29, 26, 12.5 and 16?years of observations, respectively. The input data used in its elaboration are time series (weekly from satellite techniques and 24-h session-wise from VLBI) of station positions and daily Earth Orientation Parameters (EOPs). The ITRF2008 origin is defined in such a way that it has zero translations and translation rates with respect to the mean Earth center of mass, averaged by the SLR time series. Its scale is defined by nullifying the scale factor and its rate with respect to the mean of VLBI and SLR long-term solutions as obtained by stacking their respective time series. The scale agreement between these two technique solutions is estimated to be 1.05 ± 0.13 ppb at epoch 2005.0 and 0.049 ± 0.010?ppb/yr. The ITRF2008 orientation (at epoch 2005.0) and its rate are aligned to the ITRF2005 using 179 stations of high geodetic quality. An estimate of the origin components from ITRF2008 to ITRF2005 (both origins are defined by SLR) indicates differences at epoch 2005.0, namely: ?0.5, ?0.9 and ?4.7?mm along X, Y and Z-axis, respectively. The translation rate differences between the two frames are zero for Y and Z, while we observe an X-translation rate of 0.3?mm/yr. The estimated formal errors of these parameters are 0.2?mm and 0.2?mm/yr, respectively. The high level of origin agreement between ITRF2008 and ITRF2005 is an indication of an imprecise ITRF2000 origin that exhibits a Z-translation drift of 1.8?mm/yr with respect to ITRF2005. An evaluation of the ITRF2008 origin accuracy based on the level of its agreement with ITRF2005 is believed to be at the level of 1?cm over the time-span of the SLR observations. Considering the level of scale consistency between VLBI and SLR, the ITRF2008 scale accuracy is evaluated to be at the level of 1.2?ppb (8?mm at the equator) over the common time-span of the observations of both techniques. Although the performance of the ITRF2008 is demonstrated to be higher than ITRF2005, future ITRF improvement resides in improving the consistency between local ties in co-location sites and space geodesy estimates.  相似文献   
958.
Time-series of zenith wet and total troposphere delays as well as north and east gradients are compared, and zenith total delays (ZTD) are combined on the level of parameter estimates. Input data sets are provided by ten Analysis Centers (ACs) of the International VLBI Service for Geodesy and Astrometry (IVS) for the CONT08 campaign (12?C26 August 2008). The inconsistent usage of meteorological data and models, such as mapping functions, causes systematics among the ACs, and differing parameterizations and constraints add noise to the troposphere parameter estimates. The empirical standard deviation of ZTD among the ACs with regard to an unweighted mean is 4.6?mm. The ratio of the analysis noise to the observation noise assessed by the operator/software impact (OSI) model is about 2.5. These and other effects have to be accounted for to improve the intra-technique combination of VLBI-derived troposphere parameters. While the largest systematics caused by inconsistent usage of meteorological data can be avoided and the application of different mapping functions can be considered by applying empirical corrections, the noise has to be modeled in the stochastic model of intra-technique combination. The application of different stochastic models shows no significant effects on the combined parameters but results in different mean formal errors: the mean formal errors of the combined ZTD are 2.3?mm (unweighted), 4.4?mm (diagonal), 8.6?mm [variance component (VC) estimation], and 8.6?mm (operator/software impact, OSI). On the one hand, the OSI model, i.e. the inclusion of off-diagonal elements in the cofactor-matrix, considers the reapplication of observations yielding a factor of about two for mean formal errors as compared to the diagonal approach. On the other hand, the combination based on VC estimation shows large differences among the VCs and exhibits a comparable scaling of formal errors. Thus, for the combination of troposphere parameters a combination of the two extensions of the stochastic model is recommended.  相似文献   
959.
Quality assessment of GPS reprocessed terrestrial reference frame   总被引:4,自引:1,他引:4  
The International GNSS Service (IGS) contributes to the construction of the International Terrestrial Reference Frame (ITRF) by submitting time series of station positions and Earth Rotation Parameters (ERP). For the first time, its submission to the ITRF2008 construction is based on a combination of entirely reprocessed GPS solutions delivered by 11 Analysis Centers (ACs). We analyze the IGS submission and four of the individual AC contributions in terms of the GNSS frame origin and scale, station position repeatability and time series seasonal variations. We show here that the GPS Terrestrial Reference Frame (TRF) origin is consistent with Satellite laser Ranging (SLR) at the centimeter level with a drift lower than 1 mm/year. Although the scale drift compared to Very Long baseline Interferometry (VLBI) and SLR mean scale is smaller than 0.4 mm/year, we think that it would be premature to use that information in the ITRF scale definition due to its strong dependence on the GPS satellite and ground antenna phase center variations. The new position time series also show a better repeatability compared to past IGS combined products and their annual variations are shown to be more consistent with loading models. The comparison of GPS station positions and velocities to those of VLBI via local ties in co-located sites demonstrates that the IGS reprocessed solution submitted to the ITRF2008 is more reliable and precise than any of the past submissions. However, we show that some of the remaining inconsistencies between GPS and VLBI positioning may be caused by uncalibrated GNSS radomes.  相似文献   
960.
Fine spatial resolution (e.g., <300 m) thermal data are needed regularly to characterise the temporal pattern of surface moisture status, water stress, and to forecast agriculture drought and famine. However, current optical sensors do not provide frequent thermal data at a fine spatial resolution. The TsHARP model provides a possibility to generate fine spatial resolution thermal data from coarse spatial resolution (≥1 km) data on the basis of an anticipated inverse linear relationship between the normalised difference vegetation index (NDVI) at fine spatial resolution and land surface temperature at coarse spatial resolution. The current study utilised the TsHARP model over a mixed agricultural landscape in the northern part of India. Five variants of the model were analysed, including the original model, for their efficiency. Those five variants were the global model (original); the resolution-adjusted global model; the piecewise regression model; the stratified model; and the local model. The models were first evaluated using Advanced Space-borne Thermal Emission Reflection Radiometer (ASTER) thermal data (90 m) aggregated to the following spatial resolutions: 180 m, 270 m, 450 m, 630 m, 810 m and 990 m. Although sharpening was undertaken for spatial resolutions from 990 m to 90 m, root mean square error (RMSE) of <2 K could, on average, be achieved only for 990–270 m in the ASTER data. The RMSE of the sharpened images at 270 m, using ASTER data, from the global, resolution-adjusted global, piecewise regression, stratification and local models were 1.91, 1.89, 1.96, 1.91, 1.70 K, respectively. The global model, resolution-adjusted global model and local model yielded higher accuracy, and were applied to sharpen MODIS thermal data (1 km) to the target spatial resolutions. Aggregated ASTER thermal data were considered as a reference at the respective target spatial resolutions to assess the prediction results from MODIS data. The RMSE of the predicted sharpened image from MODIS using the global, resolution-adjusted global and local models at 250 m were 3.08, 2.92 and 1.98 K, respectively. The local model consistently led to more accurate sharpened predictions by comparison to other variants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号