首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104299篇
  免费   1825篇
  国内免费   1231篇
测绘学   2674篇
大气科学   7837篇
地球物理   21330篇
地质学   37030篇
海洋学   8950篇
天文学   22804篇
综合类   335篇
自然地理   6395篇
  2022年   533篇
  2021年   973篇
  2020年   1114篇
  2019年   1136篇
  2018年   2612篇
  2017年   2452篇
  2016年   3209篇
  2015年   2022篇
  2014年   3024篇
  2013年   5623篇
  2012年   3343篇
  2011年   4464篇
  2010年   3743篇
  2009年   5018篇
  2008年   4523篇
  2007年   4273篇
  2006年   4001篇
  2005年   3441篇
  2004年   3332篇
  2003年   3109篇
  2002年   2853篇
  2001年   2558篇
  2000年   2503篇
  1999年   2084篇
  1998年   2124篇
  1997年   2033篇
  1996年   1669篇
  1995年   1630篇
  1994年   1425篇
  1993年   1304篇
  1992年   1267篇
  1991年   1173篇
  1990年   1258篇
  1989年   1066篇
  1988年   995篇
  1987年   1202篇
  1986年   1033篇
  1985年   1287篇
  1984年   1419篇
  1983年   1333篇
  1982年   1270篇
  1981年   1123篇
  1980年   1028篇
  1979年   945篇
  1978年   975篇
  1977年   888篇
  1976年   834篇
  1975年   798篇
  1974年   798篇
  1973年   790篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
Woody, subalpine shrubs and grasses currently surround Lake Rutundu, Mount Kenya. Multiple proxies, including carbon isotopes, pollen and grass cuticles, from a 755‐cm‐long core were used to reconstruct the vegetation over the past 38 300 calendar years. Stable carbon‐isotope ratios of total organic carbon and terrestrial biomarkers from the lake sediments imply that the proportion of terrestrial plants using the C4 photosynthetic pathway was greater during the Late Pleistocene than in the Holocene. Pollen data show that grasses were a major constituent of the vegetation throughout the Late Pleistocene and Holocene. The proportion of grass pollen relative to the pollen from other plants was greatest at the last glacial maximum (LGM). Grass cuticles confirm evidence that C4 grass taxa were present at the LGM and that the majority followed the cold‐tolerant NADP‐MEC4 subpathway. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
92.
93.
Summary ?The NW–SE-trending Yulong porphyry Cu–Mo ore belt, situated in the Sanjiang0 area of eastern Tibet, is approximately 400 km long and 35 to 70 km wide. Complex tectonic and magmatic processes during the Himalayan epoch have given rise to favorable conditions for porphyry-type Cu–Mo mineralization. Porphyry masses of the Himalayan epoch in the Yulong ore belt are distributed in groups along regional NW–SE striking tectonic lineaments. They were emplaced mainly into Triassic and Lower Permian sedimentary-volcanic rocks. K–Ar und U–Pb isotopic datings give an intrusion age range of 57–26 Ma. The porphyries are mainly of biotite monzogranitic and biotite syenogranitic compositions. Geological and geochemical data indicate that the various porphyritic intrusions in the belt had a common or similar magma source, are metaluminous to peraluminous, Nb–Y–Ba-depleted, I-type granitoids, and belong to the high-K calc-alkaline series. Within the Yulong subvolcanic belt a number of porphyry stocks bear typical porphyry type Cu–Mo alteration and mineralization. The most prominent porphyry Co–Mo deposits include Yulong, Malasongduo, Duoxiasongduo, Mangzong and Zhanaga, of which Yulong is one of the largest porphyry Cu (Mo) deposits in China with approximately 8 × 106 tons of contained Cu metal. Hydrothermal alteration at Yulong developed around a biotite–monzogranitic porphyry stock that was emplaced within Upper Triassic limestone, siltstone and mudstone. The earliest alteration was due to the effects of contact metamorphism of the country rocks and alkali metasomatism (potassic alteration) within and around the porphyry body. The alteration of this stage was accompanied by a small amount of disseminated and veinlet Cu–Mo sulfide mineralization. Later alteration–mineralization zones form more or less concentric shells around the potassic zone, around which are distributed a phyllic or quartz–sericite–pyrite zone, a silicification and argillic zone, and a propylitic zone. Fluid inclusion data indicate that three types of fluids were involved in the alteration–mineralization processes: (1) early high temperature (660–420 °C) and high salinity (30–51 wt% NaCl equiv) fluids responsible for the potassic alteration and the earliest disseminated and/or veinlet Cu–Mo sulfide mineralization; (2) intermediate unmixed fluids corresponding to phyllic alteration and most Cu–Mo sulfide mineralization, with salinities of 30–50 wt% NaCl equiv and homogenization temperatures of 460–280 °C; and (3) late low to moderate temperature (300–160 °C) and low salinity (6–13 wt% NaCl equiv) fluids responsible for argillic and propylitic alteration. Hydrogen and oxygen isotopic studies show that the early hydrothermal fluids are of magmatic origin and were succeeded by increasing amounts of meteoric-derived convective waters. Sulfur isotopes also indicate a magmatic source for the sulfur in the early sulfide mineralization, with the increasing addition of sedimentary sulfur outward from the porphyry stock. Received August 29, 2001; revised version accepted May 1, 2002 Published online: November 29, 2002  相似文献   
94.
95.
Globorotalia puncticulata and Globorotalia margaritae are critical species that define internationally recognized planktonic foraminiferal biozones in the Pliocene. These biozones are defined from stratotype sections on Sicily and their fauna are commonly considered to have been introduced to the Mediterranean after an influx of Atlantic water that terminated the late Miocene desiccation of the basin. Herein new discoveries of these species in rocks that predate the late Miocene desiccation are described. These data are supported by magneto- and lithostratigraphy that have been integrated at a single continuous section. Not only do these discoveries question the existing foraminiferal biozone stratigraphy, they also suggest new models for the dispersal of planktonic species. It is proposed that Globorotalia puncticulata and perhaps even Globorotalia margaritae evolved in the Mediterranean during earliest Messinian times (during or before chron C3Bn1n) and dispersed into the Atlantic. This suggests that a marine connection remained between the two sea areas until at least chron C3An.1n. Using the existing geomagnetic polarity time scale, these occurrences are some 2 Myr earlier than previously recorded in the Mediterranean. The distribution of G. margaritae and G. puncticulata in Mediterranean sections is likely to reflect palaeoenvironment or the preservation of deposits rather than the absolute age of the sediments.  相似文献   
96.
M.J. Bickle 《地学学报》1996,8(3):270-276
The seawater 87Sr/86Sr curve implies a 50–100 Myr episodicity in weathering rate which requires a corresponding variation in CO2 degassing from the solid earth to the atmosphere. It is proposed that this is caused by orogenesis, which both produces CO2 as a result of metamorphic decarbonation reactions, and consumes extra CO2 as a consequence of erosion-enhanced weathering. Global climate on the geological time-scale is therefore contTolled by the difference between the relatively large and variable orogenic-moderated degassing and weathering CO2 fluxes.  相似文献   
97.
98.
 The yearly nutrient supply from land and atmosphere to the study area in SW Kattegat is 10 900 tons of N and 365 tons of P. This is only few percent of the supply from adjacent marine areas, as the yearly transport through the study area is 218 000 tons of N and 18 250 tons of P. Yearly net deposition makes up 1340 tons of N (on average 2.5 g m–2 yr–1) and 477 ton of P (on average 0.9 g m–2 yr–1). Shallow-water parts of the study area have no net deposition because of frequent (>35% of the year) resuspension. Resuspension frequency in deep water is <1% of the year. Resuspension rates, as averages for the study area, are 10–17 times higher than net deposition rates. Because of resuspension, shallow-water sediments are coarse lag deposits with small amounts of organic matter (1.1%) and nutrients (0.04% N and 0.02% P). Deep-water sediments, in contrast, are fine grained with high levels of organic matter (11.7%) and nutrients (0.43% N and 0.15% P). Laboratory studies showed that resuspension changes the diffusive sediment water fluxes of nutrients, oxygen consumption, and penetration into the sediment. Fluxes of dissolved reactive phosphate from sediment to water after resuspension were negative in organic-rich sediments (13.2% organic matter) with low porosity (56) and close to zero in coarse sediments with a low organic matter content (2.3%) and high porosity (73). Fluxes of inorganic N after resuspension were reduced to 70% and 0–20% in relation to the rates before resuspension, respectively. Received: 10 July 1995 · Accepted: 19 January 1996  相似文献   
99.
The island of Lampedusa lies on the northern edge of the African continental shelf, but during some Quaternary marine lowstands it was joined to the African continent. The study and dating of the aeolian, alluvial, detrital sediments, calcareous crusts and speleothems have established that the climatic–environmental variations recorded on the island can be related chronologically to those known for northern Libya, Tunisia and the Italian peninsula. During the Last Glacial Maximum, phases of Saharan dust accumulation on Lampedusa occurred, and were coeval with dust accumulation in crater lakes and on high mountains in central‐southern Italy, and with phases of glacial advance in the Apennines and in the Alps. During the late Holocene, accumulation of Saharan dust on Lampedusa occurred but there was little accumulation of dust on the northern side of the Mediterranean Sea. With the new data from Lampedusa, it is possible to envisage two different scenarios of atmospheric circulation relating to the Last Glacial Maximum and to the late Holocene. During the Last Glacial Maximum, southerly atmospheric circulation brought rainfall to the southern slopes of the Alps and to the Apennines. During the late Holocene, a prevalent westerly atmospheric circulation became established in the northern Mediterranean. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
100.
Radiocaesium isotopes, discharged into the North-east Irish Sea from the Sellafield (formerly Windscale) nuclear fuel reprocessing plant in Cumbria, have been employed as flow monitors to update and extend the record of coastal water movement from the Irish Sea to the Clyde Sea area and, further north, to Loch Etive. The temporal trends in radiocaesium levels have been used to determine the extent of water mixing en route and to define mean advection rates. Flow conditions from the Irish Sea have changed considerably since the mid-1970s, the residence time of northern Irish Sea waters being ~12 months during 1978–1980 inclusive. Average transport times of four and six months are estimated for the Sellafield to Clyde and Sellafield to Etive transects respectively. Sellafield 137Cs levels in seawater were diluted by factors of 27 and 50 respectively during current movement to the Clyde and Etive areas. The decrease in salinity-corrected 137Cs concentrations between the Clyde and Etive suggests that dilution by Atlantic water occurs, the latter mainly entering the Firth of Lorne from the west. The majority (~94%) of the radiocaesium supply to Loch Etive enters the Firth of Lorne via the portion of the coastal current circulating west of Islay, only ~6% arriving via the Sound of Jura.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号