全文获取类型
收费全文 | 71230篇 |
免费 | 1126篇 |
国内免费 | 660篇 |
专业分类
测绘学 | 1714篇 |
大气科学 | 5030篇 |
地球物理 | 14214篇 |
地质学 | 25227篇 |
海洋学 | 6164篇 |
天文学 | 16332篇 |
综合类 | 208篇 |
自然地理 | 4127篇 |
出版年
2022年 | 396篇 |
2021年 | 704篇 |
2020年 | 778篇 |
2019年 | 825篇 |
2018年 | 1893篇 |
2017年 | 1759篇 |
2016年 | 2235篇 |
2015年 | 1318篇 |
2014年 | 2176篇 |
2013年 | 3766篇 |
2012年 | 2276篇 |
2011年 | 3118篇 |
2010年 | 2605篇 |
2009年 | 3504篇 |
2008年 | 3254篇 |
2007年 | 3045篇 |
2006年 | 2876篇 |
2005年 | 2353篇 |
2004年 | 2253篇 |
2003年 | 2110篇 |
2002年 | 1927篇 |
2001年 | 1800篇 |
2000年 | 1716篇 |
1999年 | 1377篇 |
1998年 | 1470篇 |
1997年 | 1387篇 |
1996年 | 1100篇 |
1995年 | 1142篇 |
1994年 | 962篇 |
1993年 | 872篇 |
1992年 | 855篇 |
1991年 | 759篇 |
1990年 | 856篇 |
1989年 | 717篇 |
1988年 | 650篇 |
1987年 | 814篇 |
1986年 | 663篇 |
1985年 | 855篇 |
1984年 | 922篇 |
1983年 | 862篇 |
1982年 | 831篇 |
1981年 | 707篇 |
1980年 | 663篇 |
1979年 | 606篇 |
1978年 | 603篇 |
1977年 | 552篇 |
1976年 | 539篇 |
1975年 | 499篇 |
1974年 | 506篇 |
1973年 | 468篇 |
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
161.
Min Zhu Wadge G. Holley R.J. James I.N. Clark P.A. Changgui Wang Woodage M.J. 《Geoscience and Remote Sensing Letters, IEEE》2007,4(3):401-405
Propagation delay due to variable tropospheric water vapor (WV) is one of the most intractable problems for radar interferometry, particularly over mountains. The WV field can be simulated by an atmospheric model, and the difference between the two fields is used to correct the radar interferogram. Here, we report our use of the U.K. Met Office Unified Model in a nested mode to produce high-resolution forecast fields for the 3-km-high Mount Etna volcano. The simulated precipitable-water field is validated against that retrieved from the Medium-Resolution Imaging Spectrometer (MERIS) radiometer on the Envisat satellite, which has a resolution of 300 m. Two case studies, one from winter (November 24, 2004) and one from summer (June 25, 2005), show that the mismatch between the model and the MERIS fields ( rms = 1.1 and 1.6 mm, respectively) is small. One of the main potential sources of error in the models is the timing of the WV field simulation. We show that long-wavelength upper tropospheric troughs of low WV could be identified in both the model output and Meteosat WV imagery for the November 24, 2004 case and used to choose the best time of model output. 相似文献
162.
C. Jeganathan N.A.S. Hamm S. Mukherjee P.M. Atkinson P.L.N. Raju V.K. Dadhwal 《International Journal of Applied Earth Observation and Geoinformation》2011
Fine spatial resolution (e.g., <300 m) thermal data are needed regularly to characterise the temporal pattern of surface moisture status, water stress, and to forecast agriculture drought and famine. However, current optical sensors do not provide frequent thermal data at a fine spatial resolution. The TsHARP model provides a possibility to generate fine spatial resolution thermal data from coarse spatial resolution (≥1 km) data on the basis of an anticipated inverse linear relationship between the normalised difference vegetation index (NDVI) at fine spatial resolution and land surface temperature at coarse spatial resolution. The current study utilised the TsHARP model over a mixed agricultural landscape in the northern part of India. Five variants of the model were analysed, including the original model, for their efficiency. Those five variants were the global model (original); the resolution-adjusted global model; the piecewise regression model; the stratified model; and the local model. The models were first evaluated using Advanced Space-borne Thermal Emission Reflection Radiometer (ASTER) thermal data (90 m) aggregated to the following spatial resolutions: 180 m, 270 m, 450 m, 630 m, 810 m and 990 m. Although sharpening was undertaken for spatial resolutions from 990 m to 90 m, root mean square error (RMSE) of <2 K could, on average, be achieved only for 990–270 m in the ASTER data. The RMSE of the sharpened images at 270 m, using ASTER data, from the global, resolution-adjusted global, piecewise regression, stratification and local models were 1.91, 1.89, 1.96, 1.91, 1.70 K, respectively. The global model, resolution-adjusted global model and local model yielded higher accuracy, and were applied to sharpen MODIS thermal data (1 km) to the target spatial resolutions. Aggregated ASTER thermal data were considered as a reference at the respective target spatial resolutions to assess the prediction results from MODIS data. The RMSE of the predicted sharpened image from MODIS using the global, resolution-adjusted global and local models at 250 m were 3.08, 2.92 and 1.98 K, respectively. The local model consistently led to more accurate sharpened predictions by comparison to other variants. 相似文献
163.
This letter describes the extension of signal subspace processing (SSP) to the arena of anomaly detection. In particular, we develop an SSP-based, local anomaly detector that exploits the rich information available in the multiple bands of a hyperspectral (HS) image. This SSP approach is based on signal processing considerations, and its entire formulation reduces to a straightforward (and intuitively pleasing) geometric and algebraic development. We extend the basic SSP concepts to the HS anomaly detection problem, develop an SSP HS anomaly detector, and evaluate this algorithm using multiple HS data files. 相似文献
164.
P. M. Muraleedharan P. V. Sathe T. Pankajakshan 《Journal of the Indian Society of Remote Sensing》2006,34(3):261-268
A PC-based interactive software has been developed and presented here for validating geophysical data retrieved from satellite
mounted sensors operating in visible, infrared and microwave frequencies. The program, coded in Visual Basic, is user interactive
and runs on Windows-98 or higher platforms. The system prepares the database on a pre-selected Microsoft platform to enhance
processing efficiency. Sub-setting option is also provided to reduce the processing time. Data retrieved from ‘Multi-channel
Scanning Microwave Radiometer (MSMR) onboard the Indian satellites Oceansat-1 during 1999–2001 were validated using this software
as a case study. The program has several added advantages over the conventional method of validation that involves strenuous
efforts to incorporate subroutines to meet every minute requirement. Satellite-sea truth relationships on various space-time
window combinations are determined and exhibited in matrix form to visualize the nature of correlation. User has the option
to visualize the satellite-sea truth relationship through graphical representations before selecting optimum relationship
for prediction. 相似文献
165.
166.
Assessment of the LandStar Real-Time DGPS Service under Several Operational Conditions 总被引:1,自引:0,他引:1
LandStar is a differential global positioning service (DGPS) that provides 24-h real-time positioning for various applications
on land, water, and air in North America, Australia, New Zealand, Europe, and Africa. Its focus is on real-time applications
requiring a submeter positioning capability such as agriculture, forestry, Geospatial Information Systems (GIS), survey/mapping,
and land/vehicular navigation. LandStar uses a Wide Area Network of reference stations to derive DGPS corrections to model
the variation of GPS error sources over a large area. These model parameters are used by the Virtual Reference Station processors
to calculate standard corrections that are available for all predefined locations in the network. The corrections are transmitted
to the user by L-band satellite communication in the standard RTCM SC104 DGPS correction format. This article investigates
the performance of the LandStar Mk III system under various operational conditions and assesses its performance in both static
and kinematic modes. Four field tests were conducted during 12 months that tested the sysem in clear static and kinematic
conditions as well as suboptimal environments associated with low and heavy foliage conditions. Both the accuracy and availability
of the system under these conditions is investigated, with an emphasis on whether the above variables are caused by the LandStar
system differential corrections, the GPS measurements, or a combination of both. ? 1999 John Wiley & Sons, Inc. 相似文献
167.
V. K. Srivastava A. M. Rai R. K. Dixit M. P. Oza A. Narayana 《International Journal of Applied Earth Observation and Geoinformation》1999,1(3-4)
Sal (Shorea robusta) is an important forest tree species in north and north-eastern India. Large-scale plantations of this species have been raised there under taungya and coppice system of management. The conventional volume table prepared for high sal forest is referred to infer the volume of production of this species. Earlier workers have used aerial remote sensing data to develop volume tables of this species. In the present study a volume table for sal is developed based on remotely sensed satellite data using a regression technique. A two-step method was developed to estimate mean tree volume from satellite data. In step 1, mean crown diameter — an intermediate variable - was estimated from satellite data. In step 2, the estimated mean crown diameter was used to estimate the mean tree volume. Addition of age of the crop as an independent variable improved the predictive ability of the regression equation. 相似文献
168.
V. D. Mats D. Yu. Shcherbakov I. M. Efimova 《Stratigraphy and Geological Correlation》2011,19(4):404-423
Independent methods of geological and molecular-biological chronologies have made it possible to define generally corresponding
stages in the geological and biological evolution of the environments and communities of Lake Baikal since the Late Cretaceous,
i.e., during the last 70 myr. All the abiotic elements drastically changed during geological evolution, with destruction of
existing and formation of new natural complexes. Nevertheless, some specific zones retained relicts of former settings. The
resulting present-day natural complex includes elements of different ages and geneses. Similar to different natural zones
of the present-day Earth, which are populated by different biocoenoses, stages in the development of abiotic elements are
also characterized by different faunal and floral assemblages. Some taxa were replaced by others, and the resulting aqueous
biota of Lake Baikal includes different-age and ecologically different elements. The oldest groups of Baikal organisms appeared
approximately 70 Ma ago, although the largest proportion of the lake biota started forming 4–3 Ma ago in response to the most
drastic changes in the abiotic elements of the environment. The youngest taxa appeared 1.8 to 0.15 Ma ago, i.e., during the
period when superdeep lake environments and mountainous glaciations were developing. The chronological coincidence of main
stages in development of abiotic and biotic elements of the nature indicates their relationships. Particular transformations
of abiotic elements and the probable mechanism of their influence on the evolution of living communities are also considered. 相似文献
169.
Chondrules were extracted from a disaggregated sample of the Allegan meteorite. Individual chondrules were examined with apparatus incorporating two orthogonal binocular microscopes, and their three major axes measured. Maximum chondrule diameters ranged from 0.15 to 2.75 mm with a peak in distribution between 0.35 and 0.75 mm. The chondrule size distribution was found not to conform to Rosin's law. The chondrules were found to depart from sphericity by only small amounts. The authors still believe that the melting of nebula dust-ball agglomerates by some high-energy event was the most probable mechanism for the formation of chondrules. 相似文献
170.
Philip M. Fearnside 《Climatic change》2000,46(1-2):115-158
Tropical forest conversion, shiftingcultivation and clearing of secondary vegetation makesignificant contributions to global emissions ofgreenhouse gases today, and have the potential forlarge additional emissions in future decades. Globally, an estimated 3.1×109 t of biomasscarbon of these types is exposed to burning annually,of which 1.1×109 t is emitted to the atmospherethrough combustion and 49×106 t is converted tocharcoal (including 26–31×106 t C of blackcarbon). The amount of biomass exposed to burningincludes aboveground remains that failed to burn ordecompose from clearing in previous years, andtherefore exceeds the 1.9×109 t of abovegroundbiomass carbon cleared on average each year. Above-and belowground carbon emitted annually throughdecomposition processes totals 2.1×109 t C. Atotal gross emission (including decomposition ofunburned aboveground biomass and of belowgroundbiomass) of 3.41×109 t C year-1 resultsfrom clearing primary (nonfallow) and secondary(fallow) vegetation in the tropics. Adjustment fortrace gas emissions using IPCC Second AssessmentReport 100-year integration global warming potentialsmakes this equivalent to 3.39×109 t ofCO2-equivalent carbon under a low trace gasscenario and 3.83×109 t under a high trace gasscenario. Of these totals, 1.06×109 t (31%)is the result of biomass burning under the low tracegas scenario and 1.50×109 t (39%) under thehigh trace gas scenario. The net emissions from allclearing of natural vegetation and of secondaryforests (including both biomass and soil fluxes) is2.0×109 t C, equivalent to 2.0–2.4×109 t of CO2-equivalent carbon. Adding emissions of0.4×109 t C from land-use category changesother than deforestation brings the total for land-usechange (not considering uptake of intact forest,recurrent burning of savannas or fires in intactforests) to 2.4×109 t C, equivalent to 2.4–2.9×109 t of CO2-equivalent carbon. The totalnet emission of carbon from the tropical land usesconsidered here (2.4×109 t C year-1)calculated for the 1981–1990 period is 50% higherthan the 1.6×109 t C year-1 value used by the Intergovernmental Panel on Climate Change. The inferred (= `missing') sink in the global carbonbudget is larger than previously thought. However,about half of the additional source suggested here maybe offset by a possible sink in uptake by Amazonianforests. Both alterations indicate that continueddeforestation would produce greater impact on globalcarbon emissions. The total net emission of carboncalculated here indicates a major global warmingimpact from tropical land uses, equivalent toapproximately 29% of the total anthropogenic emissionfrom fossil fuels and land-use change. 相似文献