首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   3篇
地球物理   1篇
地质学   35篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2011年   1篇
  2010年   1篇
  2009年   4篇
  2008年   5篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2001年   1篇
  1997年   1篇
  1994年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
21.
A mesoscale model of desiccation of soil based on the evolution of the pore system idealized as bimodal is numerically examined. A simplified evolution of the model reveals a series of characteristics that qualitatively agree with the observed macroscopic experimental findings. The principal mechanism is deemed to be driven by the surface evaporation and water outflow generating a pore pressure gradient resulting in the shrinkage mainly of the largest pores. The amount of shrinkage is a function of (negative) pore pressure and is controlled by the compressibility of the solid matrix. The numerical model includes also the ensuing partial saturation stage initiated by the air entry simulated as a scenario with a moving phase interface inside the pore. The proposed model can be extended beyond the two‐mode porosity soils, to include the multi‐modal porosity, or its statistical representation.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
22.
This paper addresses various issues concerning the modelling of solid–liquid–air coupling in multiphase porous media with an application to unsaturated soils. General considerations based on thermodynamics permit the derivation and discussion of the general form of field equations; two cases are considered: a three phase porous material with solid, liquid and gas, and a two phase porous material with solid, liquid and empty space. Emphasis is placed on the presentation of differences in the formulation and on the role of the gas phase. The finite element method is used for the discrete approximation of the partial differential equations governing the problem. The two formulations are then analysed with respect to a documented drainage experiment carried out by the authors. The merits and shortcomings of the two approaches are shown. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
23.
To characterise the water retention behaviour of fine soils, high suction values are applied. In this range of values, the vapour equilibrium technique is usually used. This paper presents an innovative device, a sorption bench that permits the determination of the water retention curve of soil. With this new testing method, the time required for testing is significantly reduced. In addition, this apparatus enables the thermal conditions of a test to be controlled; thus, the applied suction can be better controlled, and the water retention curve for different temperatures can be determined. Another valuable aspect of the device is the adopted technical solution that permits weighing of the samples inside the desiccators at any time. Consequently, the water content kinetics can be defined without disturbing the drying or wetting processes.  相似文献   
24.
Soils, as well as most of deformable multiphase porous materials, are likely to suffer from desiccation cracking, leading to the formation of regular crack patterns affecting their permeability. The ensuing crack spacing has often been related to a concept sometimes called “sequential infilling”: it is assumed that desiccation cracks are formed by successive generations. However, such a concept does not consider the pattern of a simultaneous crack formation at a given moment. Using our desiccation cracking test results and their numerical simulation, we propose a consistent explanation for the formation of desiccation crack patterns in soils. We show that the “sequential infilling” concept is suitable only when the position of the crack(s) clearly stems from the stress field. To derive an estimate of the desiccation crack spacing, the overall energy of the system needs to be considered. Statistical variability should be superimposed on the mean deterministic conditions discussed here.  相似文献   
25.
The presented paper deals with a constrained optimisation technique for the calibration of elasto-plastic model parameters in a rational and objective manner. The procedure consists in finding a set of model parameters which minimise the difference between the experimental data and the numerical simulations defined by an objective function. For this purpose, an optimisation routine, termed ParaID, has been developed which combines the quasi-Newton and stochastic methods. The optimisation technique was employed to calibrate a multi-mechanism elasto-plastic constitutive model. Using the results of three isotropically consolidated drained triaxial compression tests, a comparison between numerical and experimental results clearly shows the capability of the optimisation procedure to determine the model parameters correctly.  相似文献   
26.
Constitutive analysis of the mechanical anisotropy of Opalinus Clay   总被引:1,自引:0,他引:1  
This paper aims to analyse the anisotropic features of behaviour of Opalinus Clay using the theory of plastic multi-mechanisms. The results of triaxial tests conducted with different load levels and directions showed that the mechanical behaviour of this shale is cross-anisotropic. The stiffer samples are those in which the loading direction is parallel to the bedding plane. This indicates that the preconsolidation stress depends on the orientation of the load with respect to the fabric of Opalinus Clay. It is proposed to interpret the observed cross-anisotropy with an elastoplastic model based on four plastic strain mechanisms that may be successively mobilised depending on the loading direction. The predicted stress–strain responses vary according to the directions of the space as a result of the hardening process, depending on the number of plastic strain mechanisms that have been mobilised. The numerical predictions show overall good agreement with the experimental data in terms of deviatoric stress versus axial strain, demonstrating that multi-mechanism plasticity is a suitable constitutive tool for the interpretation of the mechanical anisotropy of this shale.  相似文献   
27.
The effective stress principle, conventionally applied in saturated soils, is reviewed for constitutive modelling purposes. The assumptions for the applicability of Terzaghi's single effective stress are recalled and its advantages are inventoried. The possible stress frameworks applicable to unsaturated soil modelling are reassessed in a comparative manner, specifically the Bishop's single effective stress, the independent stress variables approach and the generalized stress framework. The latter considerations lead to the definition of a unified stress context, suitable for modelling soils under different saturation states. In order to qualify the implications brought by the proposed stress framework, several experimental data sets are re‐examined in the light of the generalized effective stress. The critical state lines (CSLs) at different saturation states tend to converge remarkably towards a unique saturated line in the deviatoric stress versus mean effective stress plane. The effective stress interpretation is also applied to isotropic paths and compared with conventional net stress conception. The accent is finally laid on a second key feature for constitutive frameworks based on a unified stress, namely the sufficiency of a unique mechanical yield surface besides the unique CSL. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
28.
29.
Retention behaviour of natural clayey materials at different temperatures   总被引:2,自引:1,他引:1  
The water retention capacity of geomaterials, and especially clayey soils, is sensitive to temperature changes as the physical mechanisms of retention, such as capillarity or adsorption, are affected by it. It is therefore a major issue to be able to define temperature-dependent behaviour of materials, especially for geo-energy and geo-environmental applications involving non-isothermal conditions. This paper presents results of experiments conducted on two representative materials: a hard clay (Opalinus clay) and a plastic clay (Boom clay), both of which have been considered as buffer materials for underground radioactive waste disposal, in Switzerland and Belgium, respectively. Two new devices were developed for this purpose to permit the analysis of water retention behaviour at different temperatures. The behaviour of these two materials at ambient (20 °C) and high temperature (80 °C) was observed and described through the evolution of the degree of saturation, the water content and the void ratio with respect to suction. It appears that the retention capability of the clays reduces significantly with an increase in temperature; on the other hand, the change in temperature had less of an effect on the total volume variation.  相似文献   
30.
Mechanical Testing in Unsaturated Soils   总被引:1,自引:0,他引:1  
The state-of-the-art report presented herein is aimed at documenting, to the largest extent possible, some of the recent advances in laboratory testing of unsaturated soils for stress–strain–strength–stiffness characterization under suction-controlled isotropic, axisymmetric, and true triaxial stress states. The report is intended to be neither comprehensive nor fully inclusive, offering plenty of room for further discussion on recent refinements and techniques not yet reported in the literature. The main sections in this report are devoted to describing current methods and technologies using cylindrical triaxial systems, including advances in volume change measurements; resonant column/torsional shear systems; bender element-based systems; and suction-controlled testing under true triaxial stress states. Concluding remarks are included in the last section of the report.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号