首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   4篇
测绘学   2篇
大气科学   3篇
地球物理   10篇
地质学   37篇
海洋学   15篇
天文学   8篇
  2023年   1篇
  2021年   1篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2011年   3篇
  2010年   5篇
  2009年   5篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   6篇
  2001年   4篇
  1999年   1篇
  1997年   3篇
  1995年   3篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
排序方式: 共有75条查询结果,搜索用时 875 毫秒
51.
The kinetics of the reactions of water, hydroxide ion and sulfide species with CO2, OCS and CS2 are investigated using the molecular orbital approach and available kinetic data. Although these reactions are symmetry allowed, the lowest unoccupied molecular orbital (LUMO) for CO2 is a poor electron accepting orbital as it has a positive potential energy. At low pH, hydration of CO2 requires that the waters interact with CO2 via hydrogen bonding for subsequent formation of H2CO3 in an effort to overcome the high energy of activation. These factors are significant for the slow kinetics of hydration and the persistence of CO2 in water. The reaction of hydroxide ion with CO2 has a much smaller energy of activation. For the isoelectronic species OCS and CS2, their LUMO orbitals are good electron acceptor orbitals, and the energy of activation is less than that for the corresponding CO2 reactions. The LUMO orbitals for OCS and CS2 have less carbon character whereas the LUMO for CO2 has more carbon character. The relative rates of these reactions (CO2 > OCS > CS2) reflect the increased carbon character of the π* LUMO orbital for CO2 over CS2 and the fact that the LUMO for OCS is σ*, which when filled can readily break the C—S bond leading to sulfide (even though the C character of the LUMO is less than those for CO2 and CS2). Also, the higher hydrogen bonding interactions with nearest water molecules is in the order CO2 > OCS > CS2 indicating that hydrolysis via water catalysis is retarded as the number of S atoms increases. Solid phase FeS has a highest occupied molecular orbital (HOMO) with a potential energy similar to that of CO2 and can activate (or bond with) the carbon atom in CO2 so that organic compounds can be produced under hydrothermal vent conditions.  相似文献   
52.
Solid and colloidal iron oxides are commonly involved in early diagenesis. More readily available soluble Fe(III) should accelerate the cycling of iron (Fe) and sulfur (S) in sediments. Experiments with synthetic solutions (Taillefert et al. 2000) showed that soluble Fe(III) (i.e., <50 nm diameter) reacts at a mercury voltammetric electrode at circumneutral pH if it is complexed by an organic ligand. The reactivity of soluble organic-Fe(III) with sulfide is greatly increased compared to its solid equivalent (e.g., amorphous hydrous iron oxides or goethite). We report here data from two different creeks of the Hackensack Meadowlands District (New Jersey) collected with solid state Au/Hg voltammetric microelectrodes and other conventional techniques, which confirm the existence of soluble organic-Fe(III) in sediments and its interaction with sulfide. Chemical profiles in these two anoxic sediments show the interaction between iron and sulfur during early diagenesis. Soluble organic-Fe(III) and Fe(II) are dominant in a creek where sulfide is negligible. This dominance suggests that the reductive dissolution of iron oxides goes through the dissolution of solid Fe(III), then reduction to Fe(II), or that soluble organic-Fe(III) is formed by chemical or microbial oxidation of organic-Fe(II) complexes. In a creek sediment where sulfide occurs in significant concentration, the reductive dissolution of Fe(III) is followed by formation of FeS(aq), which further precipitates. Dissolved sulfide may influence the fate of soluble organic-Fe(III), but the pH may be the key variable behind this process. The high reactivity of soluble organic-Fe(III) and its mobility may result in the shifting of local reactions, at depths where other electron acceptors are used. These data also suggest that estuarine and coastal sediments may not always be at steady state.  相似文献   
53.
Summary The interannual variability of the monthly mean upper layer thickness for the central Arabian Sea (5°N-15° N and 60° E-70° E) from a numerical model of the Indian Ocean during the period 1954–1976 is investigated in relation to Indian monsoon rainfall variability. The variability in the surface structure of the Somali Current in the western Arabian Sea is also briefly discussed. It is found that these fields show a great deal of interannual variability that is correlated with variability in Indian monsoon rainfall. Model upper layer thickness (H) is taken as a surrogate variable for thermocline depth, which is assumed to be correlated with sea surface temperature. In general, during the period 1967 to 1974, which is a period of lower than normal monsoon rainfall, the upper ocean warm water sphere is thicker (deeper thermocline which implies warmer surface water); in contrast, during the period 1954–1966, which is a period of higher than normal monsoon rainfall, the upper warm water sphere is thinner (shallower thermocline which implies cooler surface water). The filtered time series of uppper layer thickness indieates the presence of a quasi-biennial oscillation (QBO) during the wet monsoon period, but this QBO signal is conspicuously absent during the dry monsoon period.Since model H primarily responds to wind stress curl, the interannual variability of the stress curl is investigated by means of an empirical orthogonal function (EOF) analysis. The first three EOF modes represent more than 72% of the curl variance. The spatial patterns for these modes exhibit many elements of central Arabian Sea climatology. Features observed include the annual variation in the intensity of the summer monsoon ridge in the Arabian Sea and the annual zonal oscillation of the ridge during pre- and post-monsoon seasons. The time coefficients for the first EOF amplitude indicate the presence of a QBO during the wet monsoon period only, as seen in the ocean upper layer thickness.The variability in the model upper layer thickness is a passive response to variability in the wind field, or more specifically to variability in the Findlater Jet. When the winds are stronger, they drive stronger currents in the ocean and have stronger curl fields associated with them, driving stronger Ekman pumping. They transport more moisture from the southern hemisphere toward the Indian subcontinent, and they also drive a greater evaporative heat flux beneath the Findlater Jet in the Arabian Sea. It has been suggested that variability in the heat content of the Arabian Sea drives variability in Indian monsoon rainfall. The results of this study suggest that the opposite is true, that the northern Arabian Sea responds passively to variability in the monsoon system.With 10 Figures  相似文献   
54.
Upper Chesapeake Bay bottom waters are stratified in the summer. In the water column below the pycnocline, anoxic and sulfidic conditions exist. Hydrogen sulfide concentrations approach 60 μM or greater and elemental sulfur is also present. Water samples brought on board ship, exposed to light, and not treated with formaldehyde show rapid sulfide decomposition which is significantly faster than sulfide oxidation by molecular oxygen. The data presented show evidence for anaerobic, sulfide oxidation. The kinetics of the decomposition are consistent with possible biological mediation. Hydrogen, peroxide produced by microorganisms may be the chemical oxidant responsible for the oxidation. Alternately, solid metal oxides such as colloidal manganese oxide phases may be reponsible.  相似文献   
55.
Sulfate variations during a tidal cycle were investigated at three sites in a highly polluted tidal marsh. Sulfate- chlorinity relationships were determined in the light of fluctuations in temperature, dissolved oxygen and pH. The relationships were found to be seasonal in nature, being affected by temperature and rainfall effects on biologic productivity. Both reduction of sulfate ion to a sulfide species and oxidation of sulfide species to the sulfate ion were found to occur. Consideration of the sulfide oxidation process suggests the possibility that metals precipitated as sulfides may be mobilized and redistributed in the marsh system.  相似文献   
56.
We used scanning electron microscopy and energy dispersive X-ray analysis to examine sediments from vegetated portions of three salt marshes, the Great Sippewissett Marsh (Cape Cod, MA), Sapelo Island (Georgia), and the Hackensack Meadowlands (N.J.), and from the sediments of an estuary, Newark Bay (N.J.). Pyrite particles were abundant in sediments from all sites. Both fine grained pyrite crystals and framboids were found. Single, fine grained crystals (diameter = 0.2 to 2.0 micrometers) predominated in all samples, strong evidence for rapid formation of pyrite.We also found both microcrystalline and framboidal iron-oxyhydroxide phases in many of the sediment samples. This is evidence of pyrite oxidation within the sediments and suggests that iron is conserved in salt marshes even as pyrite is oxidized. The thermodynamic stability of iron phases in marsh sediments, and recent pyrite oxidation studies in coal, suggest goethite as the crystalline iron-oxyhydroxide phase present. In addition, we sometimes found a red amorphous coating on grass roots from the Great Sippewissett and Sapelo Island marshes. This coating is likely a form of hydrated iron (III) oxide.  相似文献   
57.
Aquatic Geochemistry - Given their environmental abundances, it has been long hypothesized that geochemical interactions between reactive forms of manganese and nitrogen may play important roles in...  相似文献   
58.
Impact craters are formed by the displacement and ejection of target material. Ejection angles and speeds during the excavation process depend on specific target properties. In order to quantify the influence of the constitutive properties of the target and impact velocity on ejection trajectories, we present the results of a systematic numerical parameter study. We have carried out a suite of numerical simulations of impact scenarios with different coefficients of friction (0.0–1.0), porosities (0–42%), and cohesions (0–150 MPa). Furthermore, simulations with varying pairs of impact velocity (1–20 km s−1) and projectile mass yielding craters of approximately equal volume are examined. We record ejection speed, ejection angle, and the mass of ejected material to determine parameters in scaling relationships, and to calculate the thickness of deposited ejecta by assuming analytical parabolic trajectories under Earth gravity. For the resulting deposits, we parameterize the thickness as a function of radial distance by a power law. We find that strength—that is, the coefficient of friction and target cohesion—has the strongest effect on the distribution of ejecta. In contrast, ejecta thickness as a function of distance is very similar for different target porosities and for varying impact velocities larger than ~6 km s−1. We compare the derived ejecta deposits with observations from natural craters and experiments.  相似文献   
59.
Shatter cones are diagnostic for the recognition of meteorite impact craters. They are unambiguously identifiable in the field and the only macroscopic shock deformation feature. However, the physical boundary conditions and exact formation mechanism(s) are still a subject of debate. Melt films found on shatter cone surfaces may allow the constraint of pressure–temperature conditions during or immediately after their formation. Within the framework of the MEMIN research group, we recovered 24 shatter cone fragments from the ejecta of hypervelocity impact experiments. Here, we focus on silicate melt films (now quenched to glass) found on shatter cone surfaces formed in experiments with 20–80 cm sized sandstone targets, impacted by aluminum and iron meteorite projectiles of 5 and 12 mm diameter at velocities of 7.0 and 4.6 km s−1, respectively. The recovered shatter cone fragments vary in size from 1.2 to 9.3 mm. They show slightly curved, striated surfaces, and conical geometries with apical angles of 36°–52°. The fragments were recovered from experiments with peak pressures ranging from 46 to 86 GPa, and emanated from a zone within 0.38 crater radii. Based on iSale modeling and petrographic investigations, the shatter coned material experienced low bulk shock pressures of 0.5–5 GPa, whereas deformation shows a steep increase toward the shatter cone surface leading to localized melting of the rock, resulting in both vesicular as well as polished melt textures visible under the SEM. Subjacent to the melt films are zones of fragmentation and brittle shear, indicating movement away from the shatter cone apex of the rock that surrounds the cone. Smearing and extension of the melt film indicates subsequent movement in opposite direction to the comminuted and brecciated shear zone. We believe the documented shear textures and the adjacent smooth melt films can be related to frictional melting, whereas the overlying highly vesiculated melt layer could indicate rapid pressure release. From the observation of melting and mixing of quartz, phyllosilicates, and rutile in this overlying texture, we infer high, but very localized postshock temperatures exceeding 2000 °C. The melted upper part of the shatter cone surface cross-cuts the fragmented lower section, and is accompanied by PDFs developed in quartz parallel to the {112} plane. Based on the overprinting textures and documented shock effects, we hypothesize shatter cones start to form during shock loading and remain an active fracture surface until pressure release during unloading and infer that shatter cone surfaces are mixed mode I/II fracture surfaces.  相似文献   
60.
This study introduces an experimental approach using direct laser irradiation to simulate the virtually instantaneous melting of target rocks during meteorite impacts. We aim at investigating the melting and mixing processes of projectile (iron meteorite; steel) and target material (sandstone) under idealized conditions. The laser experiments (LE) were able to produce features very similar to those of impactites from meteorite craters and cratering experiments, i.e., formation of lechatelierite, partial to complete melting of sandstone, and injection of projectile droplets into target melts. The target and projectile melts have experienced significant chemical modifications during interaction of these coexisting melts. Emulsion textures, observed within projectile‐contaminated target melts, indicate phase separation of silicate melts with different chemical compositions during quenching. Reaction times of 0.6 to 1.4 s could be derived for element partitioning and phase‐separation processes by measuring time‐depended temperature profiles with a bolometric detector. Our LE allow (i) separate melting at high temperatures to constrain primary melt heterogeneities before mixing of projectile and target, (ii) quantification of element partitioning processes between coexisting projectile and target melts, (iii) determination of cooling rates, and (iv) estimation of reaction times. Moreover, we used a thermodynamic approach to calculate the entropy gain during laser melting. The entropy changes for laser‐melting of sandstone and iron meteorite correspond to shock pressures and particle velocities produced during the impact of an iron projectile striking a quartz target at a minimum impact velocity of ~6 km s?1, inducing peak shock pressures of ~100 GPa in the target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号