首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   18篇
  国内免费   2篇
测绘学   8篇
大气科学   16篇
地球物理   83篇
地质学   122篇
海洋学   30篇
天文学   82篇
自然地理   13篇
  2022年   4篇
  2021年   7篇
  2020年   7篇
  2019年   10篇
  2018年   14篇
  2017年   10篇
  2016年   16篇
  2015年   16篇
  2014年   19篇
  2013年   12篇
  2012年   10篇
  2011年   15篇
  2010年   13篇
  2009年   23篇
  2008年   25篇
  2007年   24篇
  2006年   18篇
  2005年   16篇
  2004年   12篇
  2003年   9篇
  2002年   13篇
  2001年   7篇
  2000年   6篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1963年   1篇
  1958年   1篇
  1953年   2篇
  1952年   2篇
  1950年   1篇
  1948年   1篇
  1946年   1篇
排序方式: 共有354条查询结果,搜索用时 281 毫秒
231.
DuneXpress     
The DuneXpress observatory will characterize interstellar and interplanetary dust in-situ, in order to provide crucial information not achievable with remote sensing astronomical methods. Galactic interstellar dust constitutes the solid phase of matter from which stars and planetary systems form. Interplanetary dust, from comets and asteroids, represents remnant material from bodies at different stages of early solar system evolution. Thus, studies of interstellar and interplanetary dust with DuneXpress in Earth orbit will provide a comparison between the composition of the interstellar medium and primitive planetary objects. Hence DuneXpress will provide insights into the physical conditions during planetary system formation. This comparison of interstellar and interplanetary dust addresses directly themes of highest priority in astrophysics and solar system science, which are described in ESA’s Cosmic Vision. The discoveries of interstellar dust in the outer and inner solar system during the last decade suggest an innovative approach to the characterization of cosmic dust. DuneXpress establishes the next logical step beyond NASA’s Stardust mission, with four major advancements in cosmic dust research: (1) analysis of the elemental and isotopic composition of individual interstellar grains passing through the solar system, (2) determination of the size distribution of interstellar dust at 1 AU from 10 − 14 to 10 − 9 g, (3) characterization of the interstellar dust flow through the planetary system, (4) establish the interrelation of interplanetary dust with comets and asteroids. Additionally, in supporting the dust science objectives, DuneXpress will characterize dust charging in the solar wind and in the Earth’s magnetotail. The science payload consists of two dust telescopes of a total of 0.1 m2 sensitive area, three dust cameras totaling 0.4 m2 sensitive area, and a nano-dust detector. The dust telescopes measure high-resolution mass spectra of both positive and negative ions released upon impact of dust particles. The dust cameras employ different detection methods and are optimized for (1) large area impact detection and trajectory analysis of submicron sized and larger dust grains, (2) the determination of physical properties, such as flux, mass, speed, and electrical charge. A nano-dust detector searches for nanometer-sized dust particles in interplanetary space. A plasma monitor supports the dust charge measurements, thereby, providing additional information on the dust particles. About 1,000 grains are expected to be recorded by this payload every year, with 20% of these grains providing elemental composition. During the mission submicron to micron-sized interstellar grains are expected to be recorded in statistically significant numbers. DuneXpress will open a new window to dusty universe that will provide unprecedented information on cosmic dust and on the objects from which it is derived.  相似文献   
232.
233.
The depositional and erosional history of the Lapis Tiburtinus endogenic travertine located circa 25 km to the east of Rome, Central Italy, near the Colli Albani quiescent volcano, is interpreted through three-dimensional stratigraphy and uranium-series geochronology. Analyses of large exposures located in active quarries and of cores obtained from 114 industrial wells reveal that the travertine deposit is about 20 km2 wide and 60 m thick on average. The travertine thickness is over 85 m toward its western N–S-elongated side, where thermal springs and large sinkholes occur aligned over a seismically-active N-striking fault. The travertine age was calculated using the U/Th isochron method. Results constrain the onset and conclusion of travertine deposition at about 115 and 30 ka, respectively. The three-dimensional study of the travertine shows that this deposit is characterized by a succession of depositional benches grown in an aggradational fashion. The benches are separated by five main erosional surfaces, which are associated with paleosols, conglomerates, and karstic features. This evidence shows that the travertine evolution was mostly controlled by water table fluctuations. Chronological correlations between travertine evolution and paleoclimate indicators suggest that the travertine deposition was partly modulated by climate conditions. Other influencing factors may have been fault-related deformation and volcanic events.  相似文献   
234.
Abstract— In this paper we reconstruct the heterogeneous lithology of an unusual intrusive rock from the acapulcoite‐lodranite (AL) parent asteroid on the basis of the petrographic analysis of 5 small (<8.3 g) meteorite specimens from the Frontier Mountain ice field (Antarctica). Although these individual specimens may not be representative of the parent‐rock lithology due to their relatively large grain size, by putting together evidence from various thin sections and literature data we conclude that Frontier Mountain (FRO) 90011, FRO 93001, FRO 99030, and FRO 03001 are paired fragments of a medium‐ to coarse‐grained igneous rock which intrudes a lodranite and entrains xenoliths. The igneous matrix is composed of enstatite (Fs13.3 ± 0.4 Wo3.1 ± 0.2), Cr‐rich augite (Fs6.1 ± 0.7 Wo42.3 ± 0.9), and oligoclase (Ab80.5 ± 3.3 Or3.2 ± 0.6). The lodranitic xenoliths show a fine‐grained (average grain size 488 ± 201 μm) granoblastic texture and consist of olivine Fa9.5 ± 0.4 and Fe,Ni metal and minor amounts of enstatite Fs12.7 ± 0.4 Wo1.8 ± 0.1, troilite, chromite, schreibersite, and Ca‐phosphates. Crystals of the igneous matrix and lodranitic xenoliths are devoid of shock features down to the scanning electron microscope scale. From a petrogenetic point of view, the lack of shock evidence in the lodranitic xenoliths of all the studied samples favors the magmatic rather than the impact melting origin of this rock. FRO 95029 is an acapulcoite and represents a separate fall from the AL parent asteroid, i.e., it is not a different clast entrained by the FRO 90011, FRO 93001, FRO 99030, and FRO 03001 melt, as in genomict breccias common in the meteoritic record. The specimen‐to‐meteorite ratio for the AL meteorites so far found at Frontier Mountain is thus 2.5.  相似文献   
235.
236.
We evaluate the potential of a hand‐held energy dispersive XRF spectrometer for the preliminary classification of non‐chondritic differentiated meteorites. The studied achondrites include nine lunar meteorites, seventeen Martian meteorites, five angrites and eighteen meteorites from asteroid 4 Vesta. Analytical precision and accuracy was tested on thirty‐nine terrestrial igneous rock slabs with a wide range of composition. Replicate analyses, performed on the studied meteorites, show that Fe/Mn values together with Si and Ca/K ratio can be used in the discrimination of different achondrite groups. Fusion crust's Fe/Mn values of meteorites from Vesta and Mars are indistinguishable from those of the interior implying that even measurements on the fusion‐crusted external surface could be sufficient to pigeonhole non‐chondritic meteorites. Hand‐held energy dispersive XRF spectrometer is a non‐destructive but very effective technique for preliminary classification of achondrites in the field and in laboratory and for the identification of mislabelled meteorites in museum collections.  相似文献   
237.
Abstract— We report on the effectiveness of using magnetic measurements in the search for meteorites on the Antarctic ice sheet, which is thus far the Earth's most productive terrain. Magnetic susceptibility measurements carried out with a pocket meter (SM30) during the 2003/04 PNRA meteorite collection expedition to northern Victoria Land (Antarctica) proved to be a rapid, sensitive, non‐destructive means for the in situ identification, pairing, and classification of meteorites. In blue ice fields characterized by the presence of moraines and glacial drifts (e.g., Miller Butte, Roberts Butte, and Frontier Mountain), magnetic susceptibility measurements allowed discrimination of meteorites from abundant terrestrial stones that look like meteorites thanks to the relatively high magnetic susceptibility of the former with respect to terrestrial rocks. Comparative measurements helped identify 16 paired fragments found at Johannessen Nunataks, thereby reducing unnecessary duplication of laboratory analyses and statistical bias. Following classifications schemes developed by us in this and previous works, magnetic susceptibility measurements also helped classify stony meteorites directly in the field, thereby providing a means for selecting samples with higher research priority. A magnetic gradiometer capable of detecting perturbations in the Earth's magnetic field induced by the presence of meteorites was an efficient tool for locating meteorites buried in snow along the downwind margin of the Frontier Mountain blue ice field. Based on these results, we believe that magnetic sensors should constitute an additional payload for robotic search for meteorites on the Antarctic ice sheet and, by extension, on the surface of Mars where meteorite accumulations are predicted by theoretical works. Lastly, magnetic susceptibility data was successfully used to crosscheck the later petrographic classification of the 123 recovered meteorites, allowing the detection of misclassified or peculiar specimens.  相似文献   
238.
Log–log correlation plots between the dissociation constants of known metal–chromate complexes and those of corresponding metal–sulfate complexes at 25 °C, 1 bar were used to derive the standard partial molal Gibbs free energies of formation of unknown metal–chromate complexes involving either (i) monovalent cations, divalent cations, and trivalent lanthanides or (ii) trivalent cations (excluding those of rare earth elements, REE) and tetravalent cations. For each of these two classes of ionic associations, empirical relationships between the standard partial molal volumes, isobaric heat capacities and entropies of known metal–chromate complexes and the corresponding thermodynamic properties of metal ions have been found. These data were utilized to evaluate the solute-characteristic parameters of the revised Helgeson–Kirkham–Flowers equation of state and to compute the thermodynamic properties of the dissociation reactions of metal–chromate complexes at high temperatures and pressures.  相似文献   
239.
Climate change is expected to alter the geographic distribution and abundance of many species. Here we examine the potential effects of climate warming on olive (Olea europaea) and olive fly (Bactrocera oleae) across the ecological zones of Arizona–California (AZ–CA) and Italy. A weather-driven physiologically-based demographic model was developed from the extensive literature and used to simulate the phenology, growth and population dynamics of both species. Observed weather for several years from 151 sites in AZ–CA and 84 sites in Italy were used in the study. Three climate-warming scenarios were developed by increasing observed average daily temperature 1°, 2° and 3°C. Predictions of bloom dates, yield, total fly pupae and percent infestation were mapped using GRASS GIS. Linear multiple-regression was used to estimate the effects of weather on yield and fly abundance. Olive has a much wider temperature range of favorability than olive fly. The model predicted the present distributions of both species and gave important insights on the potential effects of climate warming on them. In AZ–CA, climate warming is expected to contract the range of olive in southern desert areas, and expand it northward and along coastal areas. Olive fly is currently limited by high temperature in the southern part of its range and by cold weather in northern areas. Climate warming is expected to increase the range of olive fly northward and in coastal areas, but decrease it in southern areas. In Italy, the range of olive is expected to increase into currently unfavorable cold areas in higher elevations in the Apennine Mountains in central Italy, and in the Po Valley in the north. Climate warming is expected to increase the range of olive fly northward throughout most of Italy.  相似文献   
240.
The behaviour of ‘resonances’ in the spin-orbit coupling in celestial mechanics is investigated in a conservative setting. We consider a Hamiltonian nearly-integrable model describing an approximation of the spin-orbit interaction. The continuous system is reduced to a mapping by integrating the equations of motion through a symplectic algorithm. We study numerically the stability of periodic orbits associated to the above mapping by looking at the eigenvalues of the matrix of the linearized map over the full cycle of the periodic orbit. In particular, the value of the trace of the matrix is related to the stability character of the periodic orbit. We denote by ε* (p/q) the value of the perturbing parameter at which a given elliptic periodic orbit with frequency p/q becomes unstable. A plot of the critical function ε* (p/q) versus the frequency at different orbital eccentricities shows significant peaks at the synchronous resonance (for low eccentricities) and at the synchronous and 3:2 resonances (at higher eccentricities) in good agreement with astronomical observations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号