Very few data on Early Triassic marine ostracods are available. In most of cases, the data concern the upper part of the Early Triassic. The Çürük da? section, located in the Western Taurides (Turkey), well stratigraphically constrained by conodonts and foraminifera, has been re-sampled for ostracod study. A significant fauna has been discovered in the Late Permian and the levels of the Earliest Triassic (Hindeodus parvus and Isarcicella isarcica staeschei zones). The ostracods of the basis of the Kokarkuyu Fm. are the oldest Triassic forms ever discovered. The occurrence of Palaeocopes in the earliest Triassic and similarity between the Permian and Induan assemblages suggest that the Lower Triassic Çürük da? ostracods represent a survival assemblage after the Permo-Triassic mass-extinction. To cite this article: S. Crasquin-Soleau et al., C. R. Geoscience 334 (2002) 489–495.相似文献
This field study aims to determine whether increased levels of organically enriched particulate matter released by net pen fish farms (Eilat, Red Sea) would affect the growth of nubbins taken from the branching coral Stylophora pistillata. We followed the survival and growth of 1322 nubbins pruned from five colonies that were transplanted at a depth of 6 m in the vicinity of the fish cages and in a reference site, in front of the Interuniversity Institute (IUI). Nubbins were attached on U-shaped PVC plates in three orientations (up, vertical and down positions). After 50 days, survival was high in both localities and no difference was recorded between the spatial orientations. At the fish farm, however, burial of the nubbin's lateral growths and partial coverage of nubbins by settled particulate matter resulted in significant reduction of the lateral growth rates of nubbins settled in the up position as compared to the reference site. On the other hand, faster growth rates were recorded in the vertical set of nubbins at the fish farm when compared with the IUI site. These results strengthen the conclusion that physical effects, rather than nutrient enrichment, may constitute the main cause of stress for minute coral fragments (resembling coral recruits) growing near the vicinity of a fish farm. 相似文献
The impact of pond aquaculture effluents on the distribution and performance of seagrasses was examined in NE Hainan, tropical China. Samples were taken along transects in three back-reef areas with different extent of aquaculture production in their hinterland. High δ15N in seagrass leaves and epiphytes (6–9‰) similar to values in pond effluents documented aquaculture as dominant nitrogen source in the back-reefs with decreasing impact with distance from shore. Seagrass species abundance, shoot density and biomass were lower and concentrations of nutrients, chlorophyll and suspended matter were higher at nearshore sites with high and moderate pond abundance than at the control site. High epiphyte loads and low δ34S in seagrass leaves suggest temporal shading and sulphide poisoning of the nearshore seagrasses. Observed gradients in environmental parameters and seagrass performance indicate that the distance from the pond outlets and size of the adjacent pond agglomeration are major determinants of seagrass degradation. 相似文献
Abstract. The temporal dynamics of three seagrasses, Posidonia oceanica, Cymodocea nodosa and Zostera marina, was studied in different areas of the Adriatic Sea by analysing phenological parameters and biomass trends in different compartments of seagrass systems. For this purpose, samplings were conducted in 1997 once per season at each station, Otranto (southern Adriatic Sea) and Grado (northern Adriatic Sea). Structural parameters and biomass of plant compartments differed among seagrasses both in absolute values and in seasonal variability. P. oceanica was the largest plant, showing the highest number of leaves per shoot, highest leaf surface, Leaf Area Index and shoot weight. Z. marina was intermediate in size and had the longest leaves, whereas C. nodosa was the smallest seagrass. P. oceanica accounted for the highest total biomass (mean ± SE: 1895.9 ± 180.2 g DW · m–2; CV = coefficient of variation: 19.0 %), considerably more than C. nodosa (mean ± SE: 410.4 ± 88.4 g DW·m–2; CV: 43.1 %) and Z. marina (mean ± SE: 312.1 ± 75.1 g DW · m–2; CV: 48.1 %), although the two latter species displayed a higher seasonal variability. Similarly, other features, such as shoot density, leaf surface, LAI, shoot weight and relative contributions of above‐ and below‐ground compartments, were less variable across seasons in P. oceanica than in the two other seagrasses, while leaf length showed the highest seasonal fluctuation in P. oceanica. As for biomass partitioning, C. nodosa showed a higher proportion of the below‐ground relative to above‐ground biomass (up to 90 %), with a distinct seasonality, whereas in P. oceanica the proportion of below‐ground biomass (around 80 %) was fairly constant during the year. We infer that in P. oceanica the seasonal forcing is probably buffered by the availability of internal resources stored permanently during the year in the below‐ground. In C. nodosa and Z. marina, instead, growth processes seem to be amplified by a greater influence of environmental factors. 相似文献
On rimmed shelves of Bahamian-type, characterized by chlorozoan associations and typical of tropical seas, carbonate production keeps pace with normal sea-level rise except when rapid rise or drastic environmental changes occurs. On the other hand, open temperate carbonate shelves are characterized by low carbonate production of the foramol association (molluscs, benthic foraminifera, bryozoans, coralline algae, etc.) and generally show seaward relict sediments, because carbonate production cannot keep pace with normal rate of sea-level change.
Several examples of recent drowning foramol carbonate platforms (e.g., large areas of the Mediterranean Sea, eastern-northeastern Yucatan Shelf) as well as analogous ancient drowned foramol-type carbonate platforms (e.g., early to middle Miocene of the Southern Apennines; Miami Terrace) may support the idea that the drowning of many ancient carbonate platforms has been favoured by their biogenic (foramol sensu lato) constitution. Because of their typically low rate of growth, foramol carbonate platforms are fated to be drowned even if the sea-level rise is one with which the normal growth of chlorozoan platforms can keep pace. Similar conditions may also occur in tropical areas where variations in environmental conditions, such as the presence of cold waters, changes in salinity and increased nutrients, preclude the development of chlorozoan associations. 相似文献
This paper describes a simple and adaptive methodology for large area forest/non-forest mapping using Landsat ETM+ imagery and CORINE Land Cover 2000. The methodology is based on scene-by-scene analysis and supervised classification. The fully automated processing chain consists of several phases, including image segmentation, clustering, adaptive spectral representativity analysis, training data extraction and nearest-neighbour classification. This method was used to produce a European forest/non-forest map through the processing of 415 Landsat ETM+ scenes. The resulting forest/non-forest map was validated with three independent data sets. The results show that the map’s overall point-level agreement with our validation data generally exceeds 80%, and approaches 90% in central European conditions. Comparison with country-level forest area statistics shows that in most cases the difference between the forest proportion of the derived map and that computed from the published forest area statistics is below 5%. 相似文献
A core drilled within the northern part of the city of Napoli has offered the unique opportunity to observe in one single sequence the superposition of the four pyroclastic flow units emplaced during the Campanian Ignimbrite (CI) eruption. Such a stratigraphic succession has never been encountered before in natural or in man made exposures. Therefore the CI sequence was reconstructed only on the basis of stratigraphic correlations and compositional data (in literature). The occurrence of four superposed CI flows, together with all the data available (in literature) allowed us to better constrain the chemical stratigraphy of the deposit and the compositional structure of the CI magma chamber. The CI magma chamber includes two cogenetic magma layers, separated by a compositional gap. The upper magma layer was contaminated by interaction with radiogenic fluids. The two magma layers were extruded either individually or simultaneously during the course of the eruption. In the latter case they produced a hybrid magma. But no evidence of input of new geochemically and isotopically distinct magma batches just prior or during the eruption has been found. Comparison with the exposed CI deposits has permitted reconstruction of variable eruption phases and related magma withdrawal and caldera collapse episodes. The eruption was likely to have began with phreatomagmatic explosions followed by the formation of a sustained plinian eruption column fed by the simultaneous extraction from both magma layers. Towards the end of this phase the upward migration of the fragmentation surface and the decrease in magma eruption rate and/or activation of fractures formed an unstable pulsating column that was fed only by the most-evolved magma layer. This plinian phase was followed by the collapse of the eruption column and the beginning of caldera formation. At this stage expanded pyroclastic flows fed by the upper magma layer in the chamber generated. During the following major caldera collapse episode, the maximum mass discharge rate was reached and both magma layers were tapped, generating expanded pyroclastic flows. Towards the end of the eruption, only the deeper and less differentiated magma layer was tapped producing more concentrated pyroclastic flows that traveled short distances. 相似文献
The magmatic phase of the AD 79 eruption of Vesuvius produced alternations of fall and pyroclastic density current (PDC) deposits. A previous investigation demonstrated that the formation of several PDCs was linked with abrupt increases in the proportion of denser juvenile clasts within the eruptive column. Under the premise that juvenile clast density is controlled by vesiculation processes within the conduit, we investigate the processes responsible for these variations at or close to fragmentation levels. Pumice textures (vesicle sizes, numbers, and connectivity combined with crystal textures) from the AD 79 PDC deposits are compared to those from interbedded fall samples. Both PDC and fall deposits preserve textures that represent a full spectrum of degassing and outgassing processes, from bubble nucleation to collapse. Combining the textural and volatile (groundmass H2O) data, we derive a conduit model that satisfies all the textural and physical observations made for this phase of the eruption: lateral vesicularity/density stratifications are produced by maturing of bubble textures with superimposed localized shearing of bubble-rich magmas, which enhance outgassing of H2O. The incorporation of denser slower-moving magma from the conduit margins (??lateral magma density gradient??) is likely to be responsible for the higher abundances of dense juvenile pumice that triggered partial column collapses. We also illustrate how variations in the fragmentation depth (tapping a ??vertical magma density gradient??) can be responsible for variations in erupted clast density distributions, and potentially in the extent of degassing/outgassing. 相似文献
Paleomagnetic data from lithic clasts collected from Mt. St. Helens, USA, Volcán Láscar, Chile, Volcán de Colima, Mexico and
Vesuvius, Italy have been used to determine the emplacement temperature of pyroclastic deposits at these localities and to
highlight the usefulness of the paleomagnetic method for determining emplacement temperatures. At Mt. St. Helens, the temperature
of the deposits (Tdep) at three sites from the June 12, 1980 eruption was found to be ≥532°C, ≥509°C, and 510–570°C, respectively. One site emplaced
on July 22, 1980 was emplaced at ≥577°C. These new paleomagnetic temperatures are in good agreement with previously published
direct temperature measurements and paleomagnetic estimates. Lithic clasts from pyroclastic deposits from the 1993 eruption
of Láscar were fully remagnetized above the respective Curie temperatures, which yielded a minimum Tdep of 397°C. Samples were also collected from deposits thought to be pyroclastics from the 1913, 2004 and 2005 eruptions of
Colima. At Colima, the sampled clasts were emplaced cold. This is consistent with the sampled clasts being from lahar deposits,
which are common in the area, and illustrates the usefulness of the paleomagnetic method for distinguishing different types
of deposit. Tdep of the lower section of the lithic rich pyroclastic flow (LRPF) from the 472 A.D. deposits of Vesuvius was ~280–340°C. This
is in agreement with other, recently published paleomagnetic measurements. In contrast, the upper section of the LRPF was
emplaced at higher temperatures, with Tdep ~520°C. This temperature difference is inferred to be the result of different sources of lithic clasts between the upper
and lower sections, with the upper section containing a greater proportion of vent-derived material that was initially hot.
Our studies of four historical pyroclastic deposits demonstrates the usefulness of paleomagnetism for emplacement temperature
estimation. 相似文献