Since 2002 the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS) in Udine (Italy), the Agencija Republike Slovenije za Okolje (ARSO) in Ljubljana (Slovenia) and the Zentralanstalt für Meteorologie und Geodynamik (ZAMG) in Vienna (Austria), are collecting, analyzing, archiving and exchanging seismic data in real time, initially in the framework of the EU Interreg IIIa Italia-Austria project “Trans-national seismological networks in the South-Eastern Alps”. As outcome of the successful cooperation, in the 2013 OGS, ARSO and ZAMG decided to officially merge their seismic monitoring efforts into the “Central and Eastern European Earthquake Research Network—CE3RN”. This work reports the results of a nine-month real-time test of the earthquake early warning (EEW) algorithm probabilistic and evolutionary early warning system carried out at the CE3RN. The study allowed identifying the actions to be implemented in order to let the CE3RN become in the next future an efficient cross-border EEW system.
We consider the prospects for detecting weak gravitational lensing by underdensities (voids) in the large-scale matter distribution. We derive the basic expressions for magnification and distortion by spherical voids. Clustering of the background sources and cosmic variance are the main factors that limit in principle the detection of lensing by voids. We conclude that only voids with radii larger than ∼100 h −1 Mpc have lensing signal-to-noise ratio larger than unity. 相似文献